User Manual for

AutoTrack

Advanced Vehicle Swept Path Analysis
Licence agreement
This software is the property of Savoy Computing Services Limited.
It may be used only under the terms of the Licence Agreement.

Disclaimer
No warranty is given as to the results or performance of this Software.

The User is responsible for satisfying himself that the Software is suitable for his purpose and performs in accordance with the claims in the User Manual.

It is assumed that the User is a competent practitioner who is experienced in the theories and techniques upon which the Software is based.

Copyright notice
This software is the copyright of Savoy Computing Services Limited.
AutoCAD is a registered trademark of Autodesk, Inc.
MicroStation 95, MicroStation SE, MicroStation /J, MicroStation V8 & MicroStation XM are trademarks of Bentley Systems Incorporated.

Savoy Computing Services Limited
Clermont House
High Street
Cranbrook
Kent
TN17 3DN
England
Tel: +44 (0)1580 720 011
Fax: +44 (0)1580 720 022
US: 1-866 527 3790
Eml: sales@savoy.co.uk
Web: http://www.savoy.co.uk

July 08
Contents

Installing AutoTrack

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoTrack hardware lock</td>
<td>1</td>
</tr>
<tr>
<td>Authorisation code</td>
<td>2</td>
</tr>
<tr>
<td>Licences</td>
<td>2</td>
</tr>
<tr>
<td>Single user licences</td>
<td>2</td>
</tr>
<tr>
<td>Network licences</td>
<td>2</td>
</tr>
<tr>
<td>Trial copies</td>
<td>2</td>
</tr>
<tr>
<td>Demonstration copies</td>
<td>2</td>
</tr>
<tr>
<td>Installing the software</td>
<td>3</td>
</tr>
<tr>
<td>Single user version</td>
<td>3</td>
</tr>
<tr>
<td>Network version</td>
<td>4</td>
</tr>
<tr>
<td>Installing the NetHASP Licence Manager software (Network version only)</td>
<td>5</td>
</tr>
<tr>
<td>Installing the licence manager on a Windows NT/2000/XP server</td>
<td>5</td>
</tr>
<tr>
<td>Installing the licence manager on a Novell Netware server</td>
<td>10</td>
</tr>
<tr>
<td>Moving the NetHASP Licence Manager (Network version only)</td>
<td>10</td>
</tr>
<tr>
<td>Installing the NetHASP Licence Monitor software (Network version only)</td>
<td>11</td>
</tr>
<tr>
<td>Installing the licence monitor on a Windows NT/2000/xp client computer</td>
<td>11</td>
</tr>
<tr>
<td>Installing AutoTrack</td>
<td>14</td>
</tr>
<tr>
<td>Some final points to note</td>
<td>25</td>
</tr>
<tr>
<td>Modifying, repairing or removing AutoTrack</td>
<td>27</td>
</tr>
<tr>
<td>Installing AutoTrack from the web</td>
<td>30</td>
</tr>
<tr>
<td>To install the software</td>
<td>30</td>
</tr>
<tr>
<td>To extract the software</td>
<td>30</td>
</tr>
<tr>
<td>AutoCAD object enabler</td>
<td>31</td>
</tr>
<tr>
<td>To install the object enabler version from CD</td>
<td>31</td>
</tr>
<tr>
<td>To install the software from the web</td>
<td>31</td>
</tr>
<tr>
<td>Scripted 'silent' installations</td>
<td>32</td>
</tr>
<tr>
<td>Creating the install script</td>
<td>32</td>
</tr>
<tr>
<td>Running a silent install</td>
<td>33</td>
</tr>
<tr>
<td>Uninstalling AutoTrack</td>
<td>34</td>
</tr>
<tr>
<td>Updating AutoTrack</td>
<td>34</td>
</tr>
<tr>
<td>Configuring AutoCAD manually</td>
<td>35</td>
</tr>
<tr>
<td>Configuring MicroStation manually</td>
<td>37</td>
</tr>
<tr>
<td>Resolving hardware lock problems</td>
<td>39</td>
</tr>
<tr>
<td>Running the Licence Manager on the same computer as AutoTrack</td>
<td>39</td>
</tr>
<tr>
<td>Running the Licence Manager on a remote computer</td>
<td>40</td>
</tr>
<tr>
<td>Identifying and resolving problems</td>
<td>40</td>
</tr>
<tr>
<td>Technical Support</td>
<td>41</td>
</tr>
</tbody>
</table>

Starting AutoTrack

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running stand-alone AutoTrack</td>
<td>43</td>
</tr>
<tr>
<td>Demonstration Copy dialog</td>
<td>44</td>
</tr>
<tr>
<td>Running AutoTrack in AutoCAD</td>
<td>45</td>
</tr>
<tr>
<td>To run AutoTrack from the Taskbar Start Programs Menu</td>
<td>45</td>
</tr>
<tr>
<td>To run AutoTrack from within AutoCAD</td>
<td>46</td>
</tr>
<tr>
<td>To load and run AutoTrack for AutoCAD manually</td>
<td>46</td>
</tr>
<tr>
<td>Viewing AutoTrack paths in AutoCAD if you don’t have AutoTrack</td>
<td>48</td>
</tr>
<tr>
<td>Running AutoTrack in MicroStation</td>
<td>49</td>
</tr>
</tbody>
</table>
Introduction

- What AutoTrack can and can’t do ... 55
- Capabilities .. 55
- Features .. 55
- Limitations ... 55

Migrating from WinTrack .. 56

Reading pre-v5 AutoTrack libraries .. 56

How to use AutoTrack .. 56
- Settings ... 57
- Modelling rigid vehicles .. 57
- Modelling articulated semi-trailer vehicles 57
- Modelling drawbar and multi-trailer vehicles 57
- Modelling aircraft .. 58
- Modelling combination steered vehicles 58
- Modelling vehicles with pushing tractors 58
- Modelling vehicles with steerable couplings 58
- Modelling Active Hitches ... 58
- Development & planning scenarios ... 58
- Modelling the effects of super elevation and side friction 59
- Modelling trams and light rail vehicles 59
- Modelling conveyor systems .. 59
- Fastest line through roundabouts ... 59
- Checking vertical clearances .. 59

What’s new in version 8? .. 60

Features .. 55

What AutoTrack can and can’t do ... 55

Settings ... 57

Theory

- Introduction to theory ... 65
- Assumptions ... 65
- Theoretical path of a single front steered element 66
- Theoretical path of an element with front and rear steering 67
- Prediction algorithm ... 68
- Paths of towed elements ... 68
- Turning circle radius and steering angle 69
- Time related aspects ... 69
- Design speed ... 69
- Rate of application of steering lock .. 70
- Lock-to-lock distance .. 70
- Lock-to-lock time ... 70
- How the lock-to-lock rate is calculated 70
- Designing for minimum tyre wear .. 71
- Inertia ... 71
- Multiple axles ... 71
- Steered axles ... 71
User Manual for AutoTrack

Settings

<table>
<thead>
<tr>
<th>Settings Wizard: Scale (2400)</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settings Wizard: Vehicle Editing Units (2410)</td>
<td>79</td>
</tr>
<tr>
<td>Settings Wizard: Layers (2420)</td>
<td>80</td>
</tr>
<tr>
<td>Settings Wizard: Turn Transitions (2440)</td>
<td>81</td>
</tr>
<tr>
<td>Settings Wizard: Design Speed (2430)</td>
<td>82</td>
</tr>
<tr>
<td>Settings Wizard: Steering Limits (2450)</td>
<td>83</td>
</tr>
<tr>
<td>Settings Wizard: Articulation Limits (2455)</td>
<td>84</td>
</tr>
<tr>
<td>Settings Wizard: Dynamics (2460)</td>
<td>85</td>
</tr>
<tr>
<td>Settings Wizard: Updates (2470)</td>
<td>86</td>
</tr>
<tr>
<td>Settings Wizard: Finish (2480)</td>
<td>87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Wizard: Finish (3810)</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Wizard: Graphical sub-reports (3710)</td>
<td>90</td>
</tr>
<tr>
<td>Report Wizard: Path Annotation (3790)</td>
<td>91</td>
</tr>
<tr>
<td>Report Wizard: Steering & Articulation Graph (3795)</td>
<td>92</td>
</tr>
<tr>
<td>Report Wizard: Construction Lines (3800)</td>
<td>93</td>
</tr>
<tr>
<td>Report Attributes dialog (3820)</td>
<td>94</td>
</tr>
<tr>
<td>Attributes dialog (3830)</td>
<td>94</td>
</tr>
<tr>
<td>Report Wizard: Finish (3810)</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Settings: Start Up (2000)</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Settings: Network (2100)</td>
<td>100</td>
</tr>
<tr>
<td>System Settings: Updates (2100)</td>
<td>102</td>
</tr>
<tr>
<td>System Settings: View (2040)</td>
<td>104</td>
</tr>
<tr>
<td>System Settings: Skill Level (2050)</td>
<td>105</td>
</tr>
<tr>
<td>System Settings: AutoDrive (not Light Rail version) (2109)</td>
<td>106</td>
</tr>
<tr>
<td>System Settings: Manual Drive (not Light Rail version) (2110)</td>
<td>108</td>
</tr>
<tr>
<td>System Settings: Guided Drive (only Light Rail version) (2130)</td>
<td>112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drawing Settings: Units (2020)</th>
<th>114</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawing Settings: Scale (2030)</td>
<td>115</td>
</tr>
<tr>
<td>Drawing Settings: Layers (AutoCAD only) (2060)</td>
<td>116</td>
</tr>
<tr>
<td>Drawing Settings: Levels (MicroStation v8 onwards) (2067)</td>
<td>117</td>
</tr>
<tr>
<td>Drawing Settings: Levels (MicroStation pre-v8 only) (2065)</td>
<td>118</td>
</tr>
<tr>
<td>Layer / Level naming conventions</td>
<td>119</td>
</tr>
<tr>
<td>Drawing Settings: Tracking Point (not Light Rail version) (2178)</td>
<td>121</td>
</tr>
<tr>
<td>Drawing Settings: Model (not Light Rail version) (2070)</td>
<td>122</td>
</tr>
<tr>
<td>Drawing Settings: Speed (not Light Rail version) (2080)</td>
<td>124</td>
</tr>
<tr>
<td>Drawing Settings: Dynamics (not Light Rail version) (2109)</td>
<td>126</td>
</tr>
<tr>
<td>Drawing Settings: Reports (3000)</td>
<td>128</td>
</tr>
<tr>
<td>Drawing Settings: Construction Lines (3160)</td>
<td>129</td>
</tr>
<tr>
<td>Drawing Settings: Reports: Discrete (3020)</td>
<td>131</td>
</tr>
<tr>
<td>Drawing Settings: Reports: Spaced (3030)</td>
<td>133</td>
</tr>
<tr>
<td>Drawing Settings: Reports: Loci (3040)</td>
<td>135</td>
</tr>
<tr>
<td>Drawing Settings: Reports: Envelope (3050)</td>
<td>137</td>
</tr>
<tr>
<td>Drawing Settings: Reports: Offset Envelope 1</td>
<td>139</td>
</tr>
</tbody>
</table>
Driving 147

AutoDrive (not Lite or Light Rail versions) .. 148
 To use AutoDrive in Arc mode ... 148
 To drive forwards on an arc ... 149
 To drive backwards on an arc .. 149
 To use AutoDrive in Bearing mode ... 149

AutoDrive options (5110) .. 151

Manual Drive (not Light Rail version) .. 154
 To use Manual Drive .. 154
 To start driving (Control Overlay) (6020) .. 155
 To pause driving .. 155
 To adjust the view ... 156
 To undo part of the path ... 157
 To redraw the path and update the reports ... 157
 To show or hide the vehicle trail ... 157
 To edit the path properties .. 157
 To edit the path reports ... 157
 To terminate the current path .. 157

Follow (not Light Rail version) ... 158
 To use Follow ... 158

Script (not Light Rail version) ... 160
 To create or edit an AutoTrack script (6050) .. 160
 To run an AutoTrack script .. 161
 To save an AutoTrack script .. 161
 To load an AutoTrack script ... 161

AutoTrack script commands ... 161

Guided Drive (only Light Rail version) ... 165
 To use Guided Drive .. 165

Vertical Clearance ... 167
 To use Vertical Clearance .. 167

Park a Vehicle ... 169
 To use Park a Vehicle ... 169

Selecting a vehicle to drive ... 170
 To open a vehicle library .. 171
 To select a vehicle from a loaded library ... 171
 To close a vehicle library ... 171
 To set a default vehicle ... 171
 Default Vehicle dialog (5130) ... 172
 Scale dialog (5130) .. 172

Changing your vehicle .. 173
 To change the selected vehicle .. 173

Positioning a vehicle interactively ..~~~~~~ 174
 To change the position of the vehicle .. 174
 To change the heading of the vehicle .. 174
 To adjust the articulation .. 174

Positioning a vehicle (Position Vehicle dialog) (9020) 175
 To set or change the position of the vehicle ... 175
 To set or change the heading of the entire vehicle ... 175
 To set or change the starting steering angle .. 175
 To set or change the starting orientation of a selected spine 175
 To position the vehicle at the start of an existing path 176
 To position the vehicle at the end of an existing path 176
 To position the vehicle at a point on an existing path 176
 To view the path properties .. 176
 To view the path reports ... 176
To undo the last operation ... 176
To start driving ... 176
To adjust the view .. 176
Adjusting the view (View toolbar) ... 177
To reset any drawing rotation .. 177
To rotate the drawing to the left .. 177
To rotate the drawing to the right .. 177
To rotate the drawing automatically ... 177
To pan the image (e.g. if the vehicle is close to the edge of the window) ... 177
To zoom in ... 177
To zoom out ... 177
To show only the vehicle body .. 178
To show only the vehicle chassis ... 178
To show both the vehicle body and chassis 178
Adjusting the path alignment (Path toolbar) 179
To see the target points on the path ... 179
To see the steering pointer ... 179
To adjust the vehicle start position (not Light Rail version) 180
To adjust the vehicle start heading (not Light Rail version) 180
To adjust the vehicle start steering angle (not Light Rail version) 180
To adjust the vehicle start spine angles (not Light Rail version) 180
To move the path ... 180
To rotate the path ... 181
To copy the path .. 181
To explode the path entity (or cell) .. 181
To delete a path .. 181
To trim the start of the path .. 181
To trim the end of the path .. 182
To move target points (not Light Rail version) 182
To insert a new target point (not Light Rail version) 182
To remove intermediate target points (not Light Rail version) 183
To delete the last target point (not Light Rail version) 183
Adjusting the path alignment using grip editing (not MicroStation version) 184
To see the target points on a path ... 184
To see the steering pointer .. 184
To adjust the vehicle start heading (not Light Rail version) 185
To adjust the vehicle start steering angle (not Light Rail version) 185
To adjust the vehicle start spine angles (not Light Rail version) 185
To move a path .. 185
To move a target point (not Light Rail version) 185
To adjust a bearing turn (not Light Rail version) 186
To insert a new target point (not Light Rail version) 186
To remove a target point (not Light Rail version) 186
To add or remove intermediate grips (not Light Rail version) 187
Undriveable Paths .. 188
Extending or trimming a path ... 189
To extend a path .. 189
To trim the start of the path ... 189
To trim the end of the path .. 189

Template Generator ... 191
Generating turn templates .. 191
To generate a turn template .. 191
The Template Wizard ... 191
Template Wizard: Type .. 192
Template Wizard: Vehicle ... 193
Template Wizard: Model Settings ... 194
Template Wizard: Turn Angles ... 195
Template Wizard: Format ... 196
Viewing and editing paths

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing the properties of a path (Path Properties dialog)</td>
<td>197</td>
</tr>
<tr>
<td>Path Properties: Path Notes</td>
<td>198</td>
</tr>
<tr>
<td>Path Properties: Vehicle</td>
<td>198</td>
</tr>
<tr>
<td>Path Properties: Manoeuvres</td>
<td>199</td>
</tr>
<tr>
<td>Path Properties: Reports</td>
<td>201</td>
</tr>
<tr>
<td>Viewing the properties of all paths (Drawing Explorer)</td>
<td>202</td>
</tr>
<tr>
<td>Adjusting model settings (not Light Rail version)</td>
<td>204</td>
</tr>
<tr>
<td>To change the absolute steering limits</td>
<td>204</td>
</tr>
<tr>
<td>To change the absolute articulation limits</td>
<td>204</td>
</tr>
<tr>
<td>Adjusting speed settings (not Light Rail version)</td>
<td>205</td>
</tr>
<tr>
<td>To change the design speed</td>
<td>205</td>
</tr>
<tr>
<td>To change the steering rate limits</td>
<td>205</td>
</tr>
<tr>
<td>Adjusting the tracking point (not Light Rail version)</td>
<td>206</td>
</tr>
<tr>
<td>To change the tracking point</td>
<td>206</td>
</tr>
<tr>
<td>Adjusting dynamics settings (not Light Rail version)</td>
<td>206</td>
</tr>
<tr>
<td>To change dynamics settings</td>
<td>206</td>
</tr>
<tr>
<td>Purging AutoTrack data (Purge AutoTrack dialog)</td>
<td>207</td>
</tr>
<tr>
<td>Vehicle details report</td>
<td>208</td>
</tr>
<tr>
<td>To insert a vehicle details report</td>
<td>208</td>
</tr>
<tr>
<td>To move a vehicle details report</td>
<td>208</td>
</tr>
<tr>
<td>To remove a vehicle details report</td>
<td>208</td>
</tr>
<tr>
<td>Placing discrete body outlines</td>
<td>209</td>
</tr>
<tr>
<td>To place discrete outlines</td>
<td>209</td>
</tr>
<tr>
<td>Extracting path data</td>
<td>209</td>
</tr>
<tr>
<td>To extract path data</td>
<td>209</td>
</tr>
<tr>
<td>Reading extracted data in Excel</td>
<td>210</td>
</tr>
</tbody>
</table>

Animation

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating a simple animation (Basic Animation dialog)</td>
<td>211</td>
</tr>
<tr>
<td>Advanced options (Advanced Animation dialog)</td>
<td>213</td>
</tr>
<tr>
<td>Path Animation dialog</td>
<td>215</td>
</tr>
<tr>
<td>Animation Commands dialog</td>
<td>217</td>
</tr>
<tr>
<td>Animations dialog</td>
<td>219</td>
</tr>
<tr>
<td>3D Animations (AutoCAD only)</td>
<td>220</td>
</tr>
<tr>
<td>Recording an AVI file</td>
<td>221</td>
</tr>
<tr>
<td>To record an animation</td>
<td>221</td>
</tr>
</tbody>
</table>

Viewing and editing vehicles

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoTrack vehicle libraries</td>
<td>223</td>
</tr>
<tr>
<td>Access to vehicle libraries</td>
<td>223</td>
</tr>
<tr>
<td>Access to vehicles in the Pool</td>
<td>224</td>
</tr>
<tr>
<td>Compatibility with previous versions</td>
<td>224</td>
</tr>
<tr>
<td>Loading AutoTrack 2.x vehicle libraries</td>
<td>224</td>
</tr>
<tr>
<td>Viewing a vehicle in a library or the pool (Library Explorer dialog)</td>
<td>226</td>
</tr>
<tr>
<td>Customising the Library Explorer view (Library Explorer Columns dialog)</td>
<td>228</td>
</tr>
<tr>
<td>Vehicle Diagram dialog</td>
<td>229</td>
</tr>
<tr>
<td>Creating a new library (Library Details dialog)</td>
<td>231</td>
</tr>
<tr>
<td>Library Details: Library</td>
<td>231</td>
</tr>
<tr>
<td>Library Details: Users</td>
<td>231</td>
</tr>
<tr>
<td>Saving a library</td>
<td>233</td>
</tr>
<tr>
<td>Printing library or vehicle details (Print dialog)</td>
<td>234</td>
</tr>
<tr>
<td>Copying vehicles and units using drag and drop</td>
<td>235</td>
</tr>
<tr>
<td>Building vehicles using drag and drop</td>
<td>235</td>
</tr>
<tr>
<td>Unlocking a library (Unlock Library dialog)</td>
<td>236</td>
</tr>
<tr>
<td>Creating a new group</td>
<td>236</td>
</tr>
<tr>
<td>Vehicle Group dialog</td>
<td>237</td>
</tr>
<tr>
<td>Viewing a vehicle used on a particular path</td>
<td>237</td>
</tr>
</tbody>
</table>
Parking layout tools (full version only) 281

AutoTrack Parking standards... 281
Access to parking standards.. 281
Access to parking standards in the Pool.................. 282
Viewing a standard in a parking standard file or the pool (Parking Standard Explorer dialog).................. 282
Creating a new parking standard file (Parking Standard File dialog) 283
Parking Standard File: Parking Standard File 283
Parking Standard File: Users .. 284
Saving a parking standard file.. 285
Copying standards and units using drag and drop........ 286
Unlocking a parking standard file (Unlock Parking Standard File dialog) 286
Creating a new group.. 287
Parking Standard Group dialog .. 287
Selecting a Parking Standard.. 288
To set a default parking standard...................................... 288
Default Parking Standard dialog 288
Viewing or editing parking standards............................... 289
To edit a parking standard.. 289
Parking Standard: General ... 290
Parking Standard: End Islands ... 291
Parking Standard: Bend Islands 292
Parking Standard: In Bay Numbering 293
Parking Standard: Kerbside Bay Numbering 294
Parking Standard: Vehicle Classes 295
Parking Standard: Service Types 296
Parking Standard: Valid Bay Angles 297
Parking Standard: Bay Dimensions 298
Parking Standard: Parking Meters 299
Parking Standard: Bay Markings 300
Parking Standard: Bay Symbols .. 302
Parking Standard: Safety Zones .. 304
Parking Standard: Bay Styles .. 306
Parking Standard: Safety Posts ... 307
Parking Standard: Privacy Posts ... 308
Parking Standard: Wheel Stops .. 309
Parking Standard: Construction Lines ... 310
Attributes dialog... 311
Placing rows of bays.. 312
To place a row of bays freehand ... 312
To place a parallel row of bays.. 313
Unique parking standard names (Parking Standard Name dialog).................. 314
Placing access roads .. 315
To place an access road freehand ... 315
To place an access road on a line... 316
Parking Report .. 317
To display the parking report... 317
To customise the parking report... 317
To export a parking report.. 318
Editing rows (Parking Row Properties dialog) ... 319
To edit a parking row.. 319
Editing individual bays (Parking Bay Properties dialog) 321
To edit a parking bay... 321
Editing islands (Parking Island Properties dialog) 322
To edit a parking island... 322
Editing parking row layout ... 324
To move a row of bays.. 324
To rotate a row of bays... 324
To copy a row of bays... 324
To explode a row of bays.. 324
To delete a row of bays... 324
To join two rows of parking bays ... 325
To extend a row of parking bays ... 325
To add a vertex to a row of parking bays .. 325
To adjust a parking row.. 325
Managing AutoTrack data 327
Exporting AutoTrack data (Export AutoTrack Data dialog) 327
Importing AutoTrack data (Import AutoTrack Data dialog) 328
Using Export / Import for personal settings ... 328
Drawing file size .. 329
Recovering space in AutoCAD drawings.. 329
Recovering space in MicroStation drawings.. 329
Repair AutoTrack data.. 329
Worked Example 331
Important (MicroStation users only) .. 331
Step 1: Running AutoTrack and changing some commonly used settings. 332
Step 2: Selecting a vehicle and using Manual Drive (not Lite) 334
Step 3: Selecting a vehicle and using AutoDrive (not Lite version) 336
Step 4: Selecting a vehicle and using Follow.. 338
Step 5: Selecting a vehicle and using Script (not Lite version) 340
Step 6: Changing the appearance of your path .. 343
Step 7: Creating a new vehicle using the wizard 345
Step 8: Editing a vehicle using the advanced editor 352
Troubleshooting 355
Why can I not see the AutoTrack menu or toolbar 355
Why is my vehicle not visible ... 355
Why is part of my manoeuvre just a line .. 355
How can I stop the vehicle jack-knifing when reversing using Manual Drive ... 356
How can I stop my vehicle jack-knifing when reversing using AutoDrive 356
Why does my vehicle not appear as it should .. 356
How can I correct a vehicle that has over-articulated while travelling forwards . 356
Why does my vehicle not turn when I am using AutoDrive 356
Why has my envelope gone berserk ... 357
How can I remove all AutoTrack data from my drawing 357
Why do my layers not appear and disappear correctly (AutoCAD version only) ... 357
Why can I not see my AutoTrack paths when I load my drawing into another copy of AutoCAD (AutoCAD version only) .. 357
Why does Follow not follow my line accurately .. 357
Why does my vehicle oscillate when I use Follow to follow a line 358
Why does my path disappear when I stop driving in MicroStation 358
Why does my path disappear when I stop driving in AutoCAD 358
Why does AutoTrack not autload some of the Savoy vehicle libraries 358
Why do my vehicle libraries take so long to load 358
How can I remove a vehicle profile .. 359
Why are my report colour changes not visible .. 359
How can I stop AutoTrack automatically checking for updates 359
Why does my animation movie file not play on other computers 359

Vehicle Libraries

Australian Design Vehicle Library (AU_xxx.ATL) .. 362
Australian Design Vehicle Library: List of Vehicles 362
Australian Design Vehicle Library: Minimum Turning Circle Radii 363
Australian Design Vehicle Library: Lock to lock time 364
Australian Design Vehicle Library: Maximum Articulation Angles 364
Australian Design Vehicle Library: Axle layouts & wheel sizes 364
Australian Design Vehicle Library: Kingpin Offsets 365
Australian Design Vehicle Library: Vertical Clearance 365
Australian Design Vehicle Library: References 365
Austrian Design Vehicle Library (AT_xxx.ATL) ... 366
Austrian Design Vehicle Library: List of Vehicles 366
Austrian Design Vehicle Library: Turning circles 366
Austrian Design Vehicle Library: Lock to lock time 366
Austrian Design Vehicle Library: Maximum Articulation Angles 366
Austrian Design Vehicle Library: Axle layouts & wheel sizes 366
Austrian Design Vehicle Library: Kingpin offsets 367
Austrian Design Vehicle Library: References ... 367
British Design Vehicle Library (GB_xxx.ATL) ... 368
British Design Vehicle Library: Turning circles 368
British Design Vehicle Library: Lock to lock time 368
British Design Vehicle Library: Maximum Articulation Angles 368
British Design Vehicle Library: Axle layouts & wheel sizes 369
British Design Vehicle Library: Kingpin offsets 369
British Design Vehicle Library: References ... 369
Canadian Design Vehicle Library (CA_xxx.ATL) .. 370
Canadian Design Vehicle Library: List of Vehicles 370
Canadian Design Vehicle Library: Turning circles 370
Canadian Design Vehicle Library: Lock to lock time 370
Canadian Design Vehicle Library: Maximum Articulation Angles 371
Canadian Design Vehicle Library: Axle layouts & wheel sizes 371
Canadian Design Vehicle Library: Kingpin offsets 371
Canadian Design Vehicle Library: References 371
German Design Vehicle Library (DE_xxx.ATL) 372
German Design Vehicle Library: List of Vehicles 372
German Design Vehicle Library: Turning circles 372
<table>
<thead>
<tr>
<th>Design Vehicle Library</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Design Vehicle Library (US_xxx.ATL)</td>
<td>388</td>
</tr>
<tr>
<td>Swiss Design Vehicle Library (CH_xxx.ATL)</td>
<td>386</td>
</tr>
<tr>
<td>Swedish Design Vehicle Library (SE_xxx.ATL)</td>
<td>384</td>
</tr>
<tr>
<td>South African Design Vehicle Library (ZA_xxx.ATL)</td>
<td>382</td>
</tr>
<tr>
<td>Norwegian Design Vehicle Library (NO_xxx.ATL)</td>
<td>380</td>
</tr>
<tr>
<td>New Zealand Design Vehicle Library (NZ_xxx.ATL)</td>
<td>376</td>
</tr>
<tr>
<td>Netherlands Design Vehicle Library (NL_xxx.ATL)</td>
<td>374</td>
</tr>
<tr>
<td>German Design Vehicle Library (DE_xxx.ATL)</td>
<td>372</td>
</tr>
<tr>
<td>Netherlands Design Vehicle Library: Lock to lock time</td>
<td>374</td>
</tr>
<tr>
<td>Netherlands Design Vehicle Library: Maximum Articulation Angles</td>
<td>374</td>
</tr>
<tr>
<td>Netherlands Design Vehicle Library: Axle layouts & wheel sizes</td>
<td>374</td>
</tr>
<tr>
<td>Netherlands Design Vehicle Library: Kingpin offsets</td>
<td>375</td>
</tr>
<tr>
<td>New Zealand Design Vehicle Library: References</td>
<td>378</td>
</tr>
<tr>
<td>New Zealand Design Vehicle Library: Kingpin offsets</td>
<td>378</td>
</tr>
<tr>
<td>New Zealand Design Vehicle Library: Axle layouts & wheel sizes</td>
<td>378</td>
</tr>
<tr>
<td>New Zealand Design Vehicle Library: Maximum Articulation Angles</td>
<td>378</td>
</tr>
<tr>
<td>New Zealand Design Vehicle Library: Lock to lock time</td>
<td>378</td>
</tr>
<tr>
<td>New Zealand Design Vehicle Library: Turning circles</td>
<td>378</td>
</tr>
<tr>
<td>New Zealand Design Vehicle Library: List of Vehicles</td>
<td>378</td>
</tr>
<tr>
<td>Dutch Design Vehicle Library: References</td>
<td>375</td>
</tr>
<tr>
<td>Dutch Design Vehicle Library: Kingpin offsets</td>
<td>375</td>
</tr>
<tr>
<td>Dutch Design Vehicle Library: Axle layouts & wheel sizes</td>
<td>375</td>
</tr>
<tr>
<td>Dutch Design Vehicle Library: Maximum Articulation Angles</td>
<td>375</td>
</tr>
<tr>
<td>Dutch Design Vehicle Library: Lock to lock time</td>
<td>375</td>
</tr>
<tr>
<td>Dutch Design Vehicle Library: Turning circles</td>
<td>375</td>
</tr>
<tr>
<td>Dutch Design Vehicle Library: List of Vehicles</td>
<td>375</td>
</tr>
<tr>
<td>Swiss Design Vehicle Library: References</td>
<td>387</td>
</tr>
<tr>
<td>Swiss Design Vehicle Library: Kingpin offsets</td>
<td>387</td>
</tr>
<tr>
<td>Swiss Design Vehicle Library: Axle layouts & wheel sizes</td>
<td>387</td>
</tr>
<tr>
<td>Swiss Design Vehicle Library: Maximum Articulation Angles</td>
<td>387</td>
</tr>
<tr>
<td>Swiss Design Vehicle Library: Lock to lock time</td>
<td>387</td>
</tr>
<tr>
<td>Swiss Design Vehicle Library: Turning circles</td>
<td>387</td>
</tr>
<tr>
<td>Swiss Design Vehicle Library: List of Vehicles</td>
<td>387</td>
</tr>
<tr>
<td>US Design Vehicle Library: References</td>
<td>391</td>
</tr>
<tr>
<td>US Design Vehicle Library: Kingpin offsets</td>
<td>391</td>
</tr>
<tr>
<td>US Design Vehicle Library: Axle layouts & wheel sizes</td>
<td>391</td>
</tr>
<tr>
<td>US Design Vehicle Library: Maximum Articulation Angles</td>
<td>391</td>
</tr>
<tr>
<td>US Design Vehicle Library: Lock to lock time</td>
<td>391</td>
</tr>
<tr>
<td>US Design Vehicle Library: Turning circles</td>
<td>391</td>
</tr>
<tr>
<td>US Design Vehicle Library: List of Vehicles</td>
<td>391</td>
</tr>
</tbody>
</table>
Installing AutoTrack

Although installation of AutoTrack is relatively easy we nevertheless recommend that it be undertaken only by suitably competent persons.

AutoTrack hardware lock

AutoTrack is protected from illegal use by a hardware lock or hardware lock, a small device that must be plugged into either the parallel port or the USB port of your computer (or, in the case of network licences, file server). Without this device AutoTrack will not run.

Parallel hardware locks

The parallel port hardware lock may be connected at either end of a parallel printer cable but must be located between the computer and the printer (or plotter, T-switch, buffer etc.). Since the hardware lock will not affect the operation of the parallel port it can be left installed when AutoTrack is not in use.

Whenever possible printers or plotters that are plugged into the same parallel port as the AutoTrack hardware lock should be switched on before the program is used and left on throughout its use.

Up to four Savoy and third party hardware locks, as well as a printer, can be plugged into the same parallel port. However, users should note that whilst all Savoy program hardware locks are compatible with one another, third party hardware locks may cause problems. Such problems can usually be resolved by rearranging the order in which the hardware locks are chained or by plugging them in different ports.

USB hardware locks

USB hardware locks are becoming the norm with the gradual phasing out of the parallel port. There are fewer problems with USB dongles since they cannot be stacked.

Important

Replacement Savoy hardware locks will only be issued to holders of current support and maintenance contracts on return of a damaged hardware lock. If the damaged hardware lock cannot be produced a replacement copy of AutoTrack will have to be purchased.
Authorisation code

In addition to the hardware lock you will be required to enable your copy of AutoTrack by entering an Authorisation Code. The Authorisation Code changes each time the software is updated so if you download an AutoTrack update from the web you will need to contact Savoy for a new code.

Licences

Depending upon your licence you may be able to run AutoTrack on more than one computer.

Single user licences

You may install the software on as many machines as you wish but will only be able to run it on computers running Windows 98, ME, NT, 2000 or XP with an AutoTrack hardware lock plugged into the parallel or USB port.

Network licences

You may install the software on as many machines as you wish but will only be able to run it on computers running Windows 98, ME, NT, 2000 or XP that have a network link to the server that has the hardware lock plugged into its parallel or USB port.

Trial copies

Trial copies of AutoTrack may be issued with a licence that has a limited life. Once the licence expires the protection system will prevent the program from operating.

To convert an evaluation copy to the full version or to extend the evaluation period, the software will need to be relicensed. Relicensing involves issuing a new hardware lock or authorisation code.

Demonstration copies

Demonstration copies do not require a hardware lock because they distort the vehicles randomly thereby rendering them useless for real work. You may install demo copies on as many computers as you wish.
Installing the software

AutoTrack can be installed with either a single user hardware lock, which should be plugged into the computer being used, or with a network hardware lock which may be plugged into a computer remote from the one in use.

Single user version

1. Switch on the computer.
2. Do not plug the dongle in yet. If you have already plugged it in then unplug it before proceeding.
3. Login to Windows making sure that you have Administrator rights and check that there is 90MB(max) free for the program files.
4. Insert the AutoTrack CD and when it starts select Install / Update / Remove AutoTrack.
5. When Setup starts follow the prompts to install AutoTrack, selecting the Express install option. See Installing AutoTrack, later in this section, to perform a Custom install or for more details.
6. Shut down the PC, plug in the dongle and restart the computer.

USB dongles only
If you plugged in the dongle before installing the software it probably will not be installed correctly. Refer to Removing a partially installed USB dongle to remove and reinstall it.

Parallel dongles only
If you have a printer connected on the same port, switch that on first, and then the computer. If you have other hardware locks connected on the same port you may need to experiment with the order.

7. If you opted to configure your system manually then carry out any manual configuration (see Configuring AutoCAD manually or Configuring MicroStation manually later in this section).
8. Repeat for any other computers on which you want to be able to run AutoTrack.

Removing a partially installed USB dongle

1. Unplug the USB dongle.
2. Run the Hardware Lock Wizard and if there is a driver installed, click the Uninstall Driver button.
3. Rerun the Hardware Lock Wizard and click the Install Driver button.
4. Plug the USB dongle in.
5. Click Search for Savoy Hardware Locks to check that the dongle can be found.
6. Close the Hardware Lock Wizard.
Network version

Warning
The installation of the network version of AutoTrack should be carried out by a network Administrator or system supervisor.

1. Decide which computer you will install the hardware lock on (the licence server) bearing in mind that this computer must be left switched on and possibly logged in at all times. We recommend that this is neither a file server nor an AutoTrack client and we do not recommend installing the network hardware lock on computers running Windows 98.

2. Login to Windows making sure that you have Administrator rights.

3. Install the NetHASP Licence Manager software (see Installing the NetHASP Licence Manager software (Network version only)).

4. USB dongle
Plug the hardware lock into the USB port.

Parallel dongle
Close down and switch off the computer. Plug the hardware lock into the parallel port and then restart it.

Note
If you have a printer connected then switch that on first and then the computer. If you have other hardware locks connected then you may need to experiment with the order.

5. The optional NetHASP Licence Monitor allows you to monitor licence usage and may be installed on any computer, including the server if you wish (see Installing the NetHASP Licence Monitor software (Network version only)).

6. Go to first of the computers on which you wish to install AutoTrack, login to Windows making sure that you have Administrator rights, and check that there is approximately 90MB (max) free on the installation drive for the program files.

7. Insert the AutoTrack CD and when it starts select Install / Update / Remove AutoTrack.

8. When Setup starts follow the prompts to install AutoTrack, selecting the Express install option. See Installing AutoTrack, later in this section, to perform a Custom install or for more details.

9. If you opted to configure your system manually then carry out any manual configuration (see Configuring AutoCAD manually or Configuring MicroStation manually).

10. If you want to be able to monitor licence usage from this computer, install the NetHASP Licence Monitor (see Installing the NetHASP Licence Monitor software (Network version only)).

11. Repeat steps 6 to 11 for any other computers on which you want to be able to run AutoTrack.
Installing the NetHASP Licence Manager software (Network version only)

The network licence manager can be installed on a Windows NT/2000/XP network or a Novell Netware network. We do not recommend that it be installed on a computer running Windows 98.

Warning
The installation of the hardware lock on a network server should be carried out by a network Administrator or system supervisor.

Installing the licence manager on a Windows NT/2000/XP server

1. **Do not plug in the hardware lock** until you have installed the licence manager.

2. Insert the CD in the CD ROM drive. The CD will start automatically if autorun is enabled and you can proceed to step 5. If the CD does not start automatically then proceed as follows:-

3. Click the **Start** button and select Run. The Run dialog will appear.

 ![Windows 2002 Run dialogue](image)

4. Type `d:setup` (change the drive letter to suit your CD) and click on **OK**.

5. The CD browser will appear.

 ![CD Browser](image)

6. Click Install Network Utilities and then Install NetHASP Licence Manager on a Win32 computer.
7. The HASP Licence Manager Installation screen will appear.

8. Click Next. Accept the Aladdin licence agreement. The Installation Type dialog will appear.

9. We recommend that you select the Service setup. This will install the Licence Manager as an NT service and mean there is no need to log in to the computer to use the Licence Manager. If your operating system does not allow you to install the Licence Manager as a service then select the Application setup.

11. If you wish to change the default location then click **Browse** and select your preferred directory.

12. Click **Next**. The Select Program Manager Group dialog will appear.

13. Select your preferred group.

14. Click **Next**. At this point, if you opted (contrary to our recommendation) to install the Licence Manager as an application, the Put Into Startup Folder dialog will appear.
15. Select **Put into Startup Folder** if you want the licence manager to start automatically when the computer is rebooted.

16. Click **Next**. If you have a firewall enabled that would stop the licence manager from working then the XP SP2 Firewall Settings dialog will appear.

17. If you do not allow Setup to create the necessary firewall rules then you will have to set them up manually or AutoTrack will not work.

18. Click **Next**. The installation process will now start.

19. When the installation has finished the Device Driver Install dialog will appear (note that you may not see this screen if you already have a suitable device driver installed) and you will be given the opportunity to install the HASP device drivers.
20. The HASP device driver must be installed before the system will work so we recommend that you click Next to install them now. You should see a message that the hardware lock drivers have been successfully installed.

22. Make certain that the correct hardware lock is plugged in. The licence manager will not start unless the key is attached.

23. Select Yes to start the Licence Manager and then click Finish.

24. At this stage if you are using a USB dongle it should be glowing to indicate that it is working.
Installing the licence manager on a Novell Netware server

Warning
The Licence Manager will only work on servers which have IPX installed. You should use the Win32 Licence Manager for Netware IP installations.

1. Plug the hardware lock into the parallel port of your Novell Netware file server.
2. Copy the file HASPERVE.NLM to the system directory of the file server.
3. To load the Licence Manager type
4. load haspserv
5. To remove the Licence Manager type
6. unload haspserv
7. To load the Licence Manager automatically, add the line
8. load haspserv
9. to the file AUTOEXEC.NCF in the sys:system directory.

Moving the NetHASP Licence Manager (Network version only)

If you wish to move the network hardware lock to a different server then proceed as follows:-

1. Uninstall or disable the NetHASP Licence Manager on the original server.
2. Install the NetHASP Licence Manager software on the new server as described above.
3. There is no need to enter a new authorisation keycode unless you have updated AutoTrack.
4. If you have set up AutoTrack to look for the licence manager at a specific IP address, you will need to update these now.
Installing the NetHASP Licence Monitor software (Network version only)

The Licence Monitor can be installed on any computer on any computer on the network and allows users to see how many licences are currently available.

Installing the licence monitor on a Windows NT/2000/xp client computer

1. Insert the CD in the CD ROM drive of the chosen client computer. The CD will start automatically if autorun is enabled and you can proceed to step 4. If the CD does not start automatically then proceed as follows:-

2. Click the Start button and select Run. The Run dialog will appear.

Windows 2002 Run dialogue

3. Type d:setup (change the drive letter to suit your CD) and click on OK.

4. The CD browser will appear.

CD Browser

5. Click Install Network Utilities and then Install NetHASP Licence Monitor on a Win32 computer.

6. The Welcome dialog will appear.
1. Click Next. Accept the Aladdin license agreement and click Next. The Choose Destination Location dialog will appear.

2. If you wish to change the default location then click Browse and select your preferred directory.

3. Click Next. The Backup Replaced Files dialog will appear.

Welcome dialog

Choose Destination Location dialog

Backup Replaced Files dialog
10. We recommend that you opt to backup replaced files so that, in the event of a problem, you can reinstate your computer to the state it was revert to the prior to installing the software.

11. Click **Next**. The Start Installation dialog will appear.

12. Click **Next** to begin the installation.

13. Once installed the Monitor can be run by selecting **Start, Programs, Aladdin, Monitor, AKS Monitor**.
Installing AutoTrack

Run Windows as you normally would and follow the steps according to the media type.

Note
Windows NT users MUST be logged in with Administrator rights to install AutoTrack.

1. Insert the CD in the CD ROM drive. The CD will start automatically if autorun is enabled and you can proceed to step 4. If the CD does not start automatically then proceed as follows:

2. Click the **Start** button and select **Run**. The Run dialog will appear.

![Windows XP Run dialogue](image)

Windows XP Run dialogue

3. Type `d:\setup` (change the drive letter to suit your CD) and click on **OK**.

4. The CD browser will appear.

![CD Browser](image)

5. Click **Install / Update / Remove AutoTrack**.

Warning
If you have a newer version of AutoTrack installed, or the object enabler version these must be uninstalled manually before you can install standard AutoTrack.

6. If you are installing AutoTrack for the first time on a computer the Welcome to the Installshield Wizard for AutoTrack dialog will appear. Go to the next step.

If instead you see the Welcome to the AutoTrack Setup
Maintenance dialog then you already have this version of AutoTrack installed on your computer. Refer to Modifying, repairing or removing AutoTrack.

If you are updating a previous version of AutoTrack then you will see the Earlier Version Found dialog.

![Earlier Version Found dialog]

Earlier Version Found dialog

Before you can install a new version of AutoTrack any previous version must be uninstalled. You have three options:

Select **Cancel this installation** if you don’t want the previous version removed just yet or if you want to remove the previous version yourself. Setup will close.

Select **Uninstall but do not migrate settings** if you want Setup to remove the previous version for you but you do not want to transfer your settings and/or custom vehicle libraries to the new version. The previous version will be uninstalled and when it is finished you will see the Welcome to the Installshield Wizard for AutoTrack dialog.

Select **Uninstall and migrate settings** if you want Setup to remove the previous version for you and transfer your settings and/or custom vehicle libraries to the new version. This is the recommended option. The settings will be backed-up up to a folder on the desktop, then the previous version will be uninstalled and the settings when be reinstated in the new version. When it is finished you will see the Welcome to the Installshield Wizard for AutoTrack dialog.
Welcome to the Installshield Wizard for AutoTrack dialog

7. Click **Next** to start the installation process. The Licence Agreement dialog will appear.

Licence Agreement dialog

8. Click **Yes** if you accept the terms of the licence agreement. The User Information dialog will appear.
9. Enter your details.
10. Click **Next**. The Setup Type dialog will appear.

11. Select **Express** to install a stand-alone version of AutoTrack on all available platforms. On AutoCAD platforms AutoTrack will be installed on the AutoTrack profile (which will be created if necessary). Update checking will be enabled. The XviD compression codec will be installed. Adobe Acrobat Reader will be installed if necessary. Go to step 37.

 Select **Compact** if you want to install the program to all CAD systems found but want to specify the options. This option is ideal for creating silent script installs. Go to step 19.

 Select **Custom** to choose which platforms you want to install or to exclude certain options.

12. Click **Next**. The Stand-alone AutoTrack dialog will appear.
Stand-alone AutoTrack dialog

13. Tick the box if you want the stand-alone Windows host installed.

14. Click Next. The first of ten (or eleven if you are installing on a 64-bit platform) CAD system selection dialogs will appear. This one is for the AutoCAD R14 based CAD systems.

CAD System dialog (AutoCAD R14)

15. Select the AutoCAD R14 based systems on which you wish to run AutoTrack by ticking the appropriate boxes. Note that all CAD systems that Setup has found on your system will have the CAD program executable file in the edit box and will be selected by default. Setup can only fully install and configure AutoTrack for CAD systems that it can find.

16. If you wish to install support for a system that has no file listed then tick the option and click the appropriate Browse button. Now browse to the directory where Setup can find the required file. Any CAD system that you select that does not have a path listed will not be correctly installed.

systems.

CAD System dialog (MicroStation V8)

18. Select the MicroStation based systems on which you wish to run AutoTrack by ticking the appropriate boxes. Note that all versions found on your computer are selected by default.

19. Click **Next**. The Choose Destination Location dialog will appear.

Choose Destination Location dialog

20. If you wish to change the default location then click **Browse** and select your preferred directory.

21. Click **Next**. If you selected the custom installation then the Select Components dialog will appear.
Select the components that you require by checking the boxes.

23. Click **Next**. The XviD Compression Codec dialog will appear.

If you create an AVI file of an animation you will probably need to use a video compression codec to reduce the file size to a manageable level. Various video compression codecs are installed with Windows as standard but we have found the XviD video compression codec to be better than these in terms of both compression level and quality.

24. Click **Next**. The Adobe Acrobat Reader dialog will appear.
26. More than likely you already have Adobe Acrobat Reader installed on your computer but if you don’t then you will not be able to read or print the AutoTrack documentation.

27. Click Next. The Network Licence Setup dialog will appear.

28. By default network versions of AutoTrack search for a network licence manager and maintain a search list automatically. We recommend that you use this default functionality. However, you may, if you wish, enter the IP addresses of up to four licence manager servers on this dialog. These addresses can also be maintained from AutoTrack.

29. Click Next. The Update Advice dialog will appear.
Update Advice dialog

30. By default end users have options to check for more recent versions of AutoTrack either automatically (at a specified time interval) or manually. If you wish to prevent users from checking for updates entirely then untick **Allow update checking**. If you wish to only allow them to perform manual checks then tick **Allow manual check only**. Finally, to allow them to check for updates but prevent them from downloading the file untick **Allow downloads**.

31. Click **Next**. The Configuration of CAD systems dialog will appear.

Configuration of CAD systems dialog

32. You may either allow Setup to configure your CAD systems now or leave it until the first time the software is run. We recommend that you allow Setup to configure your CAD system so that when subsequently uninstall the software all settings and registry changes are reinstated. If you tick **Add an AutoTrack desktop shortcut** Setup will add a shortcut icon for each platform that you have selected. Tick the options you require.

33. Click **Next**. If you have allowed Setup to configure your CAD systems then the AutoCAD Profiles dialog will appear.
AutoCAD Profiles dialog

34. On AutoCAD you can opt to install AutoTrack onto a copy of the current profile called AutoTrack or directly onto the current profile. By default it is installed on a copy of the current profile. Untick **Install on profile AutoTrack** if you want to add AutoTrack to the current profile. If a profile called AutoTrack already exists, AutoTrack will be added to it. If you opted to manually configure your system then AutoTrack will be installed onto the current AutoCAD profile each time it is run if necessary.

35. Click **Next**. The Select Program Folder dialog will appear.

Select Program Folder dialog

36. By default Setup will install AutoTrack to the AutoTrack folder. Select an existing alternative or enter a new folder name if you wish. Note you will not see this dialog if you are modifying an installation.

37. Click **Next**. The Confirm Edits dialog will appear.
38. Double check that you are installing the correct versions (and on the correct AutoCAD profiles) and click **Next**. The installation process will now start.

39. Once AutoTrack has been installed the XviD codec will be installed if required followed by Acrobat Reader if required. In both cases, follow the prompts and accept the default values.

40. Next the hardware lock driver will be installed. During driver installation the hardware lock must be removed. The hardware lock installer is designed to run with no user interaction and should not be interrupted. You will be prompted to reinsert the hardware lock as soon as it is safe to do so.

41. When file copying is finished the Copying Complete dialog will appear.

42. The readme file lists new features and bugs fixed in the new version.

43. Click **Next**. The Setup Complete dialog will appear.
44. If it is necessary to restart your computer then you will be given the option to restart it now or later. Select your preference and click **Finish**.

45. If you chose to have Setup configure your CAD system for you then you should now be able to see AutoTrack on the top menu bar in AutoCAD or under the Applications menu on MicroStation.

46. If you chose not to allow Setup to configure your CAD system for you then refer to the section entitled Configuring AutoCAD manually or Configuring MicroStation manually as appropriate.

Some final points to note

Windows NT based systems (NT4, 2000, XP, 2003, Vista, etc.)

AutoTrack must be installed by someone with Administrator rights. Depending upon your companies security policy, before you can run the software as an end user you may need to make changes to the user profiles. Login as a normal user and if AutoTrack is on the menu and runs you do not need to make the following changes. If AutoTrack is not on the menu and/or does not run then make the following changes as appropriate:

Grant all AutoTrack users **FULL** access rights to the **SETTINGS** subdirectory and **READ / SEARCH / EXEC** access rights to the rest of the AutoTrack installation directory tree. Users will also require **FULL** access rights to the **LIBRARY** subdirectory if they are still using pre-v5 vehicle libraries stored in this directory.

If you wish to disallow access to the **SETTINGS** subdirectory then you should set up AutoTrack to store settings files in User’s “My Documents” folders (see System Settings: Start Up) and add the following line to the [Savoy WLOCK32] section of the NETWORK.INI file in the **SETTINGS** subdirectory:

```
INIFileDir=C:\myinidir
```

If you wish to disallow access to the **LIBRARY** subdirectory then you
should either re-save any pre-v5 vehicle library files using the latest version of AutoTrack or move them to another location. You can use the automatic library loading feature to load them on startup (see System Settings: Start Up).

Copy the AutoTrack menu from the Administrator's Start Programs menu to each AutoTrack user's menu.

If you are using Roaming Profiles consult your IT Department for advice.
Modifying, repairing or removing AutoTrack

Run Windows as you normally would and follow the steps according to the media type.

Note
Windows NT users MUST be logged in with Administrator rights to install AutoTrack.

1. Insert the CD in the CD ROM drive. The CD will start automatically if autorun is enabled and you can proceed to step 5. If the CD does not start automatically then proceed as follows:
2. Click the **Start** button and select **Run**. The Run dialog will appear.

 Windows XP Run dialogue

3. Type `d:\setup` (change the drive letter to suit your CD) and click on **OK**.
4. The CD browser will appear.

 CD Browser

5. Click **Install / Update / Remove AutoTrack**.

 Note
 If you have other applications running you may get a warning to close these applications so that shared files may be updated.
6. If you see the Welcome to AutoTrack Setup dialog then you do not have a copy of AutoTrack installed on your computer. Refer to Installing AutoTrack.

If you see the Earlier Version Found dialog then you are installing a new version. Refer to Installing AutoTrack.

If you have installed new CAD systems since you installed AutoTrack, or if you did not originally install AutoTrack on all CAD systems on your computer, the Unsupported CAD Systems Found dialog will appear.

Unsupported CAD Systems Found Dialog

Depending upon your particular circumstances you may Add AutoTrack to newly installed CAD systems only or Add AutoTrack to all unsupported CAD systems. Setup will update your system and close when it has finished. You may also opt to Use the Modify option (see below).

If none of these apply, or if you opted to use the Modify option, the Welcome to the AutoTrack Setup Maintenance dialog will appear.

Welcome to the AutoTrack Setup Maintenance dialog
7. If you wish to add or remove support for a CAD system or to add or remove other program files (e.g. the on-line manual) select Modify. Refer to step 7 onwards in Installing AutoTrack.

If you have reason to believe that a file is missing or has become corrupted then select Repair. This will reinstall all the files installed by the previous setup to the same location.

If you wish to remove AutoTrack from your computer select Remove. You will be asked to confirm and then AutoTrack will be removed and Setup will close.
Installing AutoTrack from the web

All AutoTrack versions are released on the Savoy web site before they are available on CD. In addition, minor updates are only available to existing users from the web site, CD’s only being issued on request.

All AutoTrack products are supplied in a single self-extracting executable with a file name of the form ATRxxx.EXE where xxx is the version number, e.g. ATR800.EXE. Note that the file is the full product and will install a full copy or update and existing copy.

You can configure AutoTrack to warn you when updates become available. If you download these updates they are placed in the My Documents\My AutoTrack Data\Updates folder. If you obtain updates by visiting the web site we recommend that you place these files in the same area.

To install the software

1. To install the software click the Start button on the Windows taskbar and select Run.

2. Browse to the file you have downloaded and click Open followed by Run.

3. AutoTrack Setup will run exactly as the CD version. For full details refer to either Installing AutoTrack or Modifying, repairing or removing AutoTrack depending upon whether you are installing or updating.

To extract the software

1. To extract the cabinet setup files to the target machine and not run setup type -extract_all:<path> after the filename in the Run dialog. Where <path> is the target folder. For example:-

 atr800.exe -extract_all:c:\setupfiles
AutoCAD object enabler

In the AutoCAD version of AutoTrack the path entity is a custom object that is calculated and drawn by AutoTrack. Systems must therefore have AutoTrack installed in order to update and maintain these objects. Proxy graphics allow non-AutoTrack users to see the data (see Viewing AutoTrack paths in AutoCAD if you don’t have AutoTrack) but the functionality is very limited, e.g. you cannot snap to an AutoTrack path.

The object enabler is designed to give non-AutoTrack users limited functionality over AutoTrack data, allowing them, for example, to move reports or snap to a path to measure a distance. It also allows selection and playback of animations contained within a drawing.

The AutoTrack object enabler is free to download and is also available on the AutoTrack CD. It may be freely emailed to non-AutoTrack recipients of AutoTrack drawings. It cannot be installed with standard AutoTrack (there would be little point anyway).

This issue does not arise in the MicroStation or stand-alone versions that use different techniques.

Important

Use of the object enabler does not in any way diminish our recommendation that you save proxy graphics with your drawing. Furthermore, you should note that if you make a change using the object enabler proxy graphics will only be resaved if you have the appropriate system variables set (see Viewing AutoTrack paths in AutoCAD if you don’t have AutoTrack).

To install the object enabler version from CD

1. First make sure that you do not have AutoTrack, either a demo or a full copy, installed.
2. Then insert the AutoTrack CD and when the CD menu appears, select Other Utilities. The installer will start.
3. Select Install Object Enabler version. Select Express to install the object enabler on all versions of AutoCAD found.

To install the software from the web

1. Download the object enabler version. It will have a filename of the form ATRxxxO.EXE, where xxx is the filename, e.g. ATR800O.EXE.
2. To install the software click the Start button on the Windows taskbar and select Run.
3. Browse to the file you have downloaded and click Open followed by Run. The installer will start.
4. Select Install Object Enabler version. Select Express to install the object enabler on all versions of AutoCAD found.
Scripted 'silent' installations

AutoTrack Setup is fully MSI and ZENworks compatible allowing the full version (i.e. not the demo version) to be installed centrally and distributed on demand over a network with no user prompts.

The following instructions assume that you plan to install the software onto one or more client computers from a central source (file server).

Apart from obvious criteria such as adequate disk space, a successful silent installation requires that:-

- the install source files are mapped to the same location for all client PC's, and
- you either specify a Compact install or that all client computers have the selected CAD system(s) installed in the same location and run at least once.

Adobe Acrobat Reader and the XviD compression codec are third party applications and their installers require some user interaction. If you would rather users did not have to interact with the install process you should select Custom install and deselect these two options. Both items are installed if you perform an Express install.

Creating the install script

You must create the installation script on a client computer that is set up exactly as the other computers on which it will be installed silently.

1. Copy the ATRACK directory from the AutoTrack CD to a suitable location on your file server's hard disk.
2. Now go to one of the client computers. To create the silent install script you need to run Setup from the ATRACK directory on the server hard disk with a -r switch. The easiest way to do this is to create a shortcut on the desktop.
3. Browse to the ATRACK directory, right click on the file setup.exe and select Create Shortcut.
4. Move the shortcut to the desktop.
5. Right click on the new desktop shortcut, select Properties and add -r to the end of the Target field. The Target field should now read something like:-

 f:\{source location}\atrack\setup.exe -r

6. Click OK to close the properties dialog.
7. Double click on this shortcut to start the AutoTrack installation and follow the prompts to install AutoTrack in the normal way.
8. Your selections and values will be stored in a file called setup.iss in the Windows directory. We recommend that you do not tick the options on the Finish dialog to view the readme file and to run the hardware lock wizard.

Note

If you intend to deploy AutoTrack while users are not logged in then perform a Custom install and deselect the option Configure my CAD systems for me.
Running a silent install

1. Working from a client computer, move the file setup.iss from the Windows directory back to the ATRACK directory on the server's hard disk.
2. Now use windows explorer to browse to the file setup.exe in the ATRACK directory on the server.
3. Right click on the file and select Create Shortcut.
4. Move the shortcut to a suitable location accessible by all potential users (probably in a public area on the server).
5. Right click on the new desktop shortcut, select Properties and add the -s switch to the Target field. The Target field should now read something like:-

 f:\{source location}\atrack\setup.exe –s

6. Click OK to close the properties dialog.
7. Double click on the desktop shortcut to start the silent install.
8. If you want to store the setup.iss file in another location use the additional switch -f1 to show Setup where to find it. For example (no space between the f1 and the path):-

 -f1{iss file path}\setup.iss

You may wish to create different iss files for installing, removing and maintaining AutoTrack each named appropriately (e.g. install.iss, remove.iss or maintain.iss) and referenced as described above. Note however that the silent setup operation will fail if you run it out of sequence, e.g. if you try to remove a copy of AutoTrack that has not been installed it will fail. The error log file (setup.log) is created in the same directory as the iss file. If the last entry in the file, under the heading [ResponseResult], is ResultCode = 0 then the operation was successful; otherwise, if failed.

Note that even a silent install will fail with an error if certain criteria are not met. These include the following:-

- inadequate disk space,
- previous version installed,
- no CAD system selected,
- CAD system still running,
- the CAD system not having been run,
- not running with administrator rights,
- not having the required level of service pack,
- both AutoCAD 2000 and AutoCAD 2002 installed (not allowed by Autodesk),
- failure to perform an automatic edit,
- failure to create the program folder, or
- failure to migrate settings.
Uninstalling AutoTrack

You can uninstall AutoTrack without going to Control Panel run Setup with a `-uninst` switch:-

```
f:\{source location}\atrack\setup.exe -uninst
```

However, this switch will still display a confirmation prompt.

To uninstall AutoTrack silently you will need to create an uninstall script. To do this go to a client computer that has AutoTrack installed and follow the steps in Creating the install script to create an uninstall script.

Updating AutoTrack

To perform a silent update of AutoTrack, we recommend that you run two scripts, one to uninstall the old version and a second to install the new version. This will require two `.iss` files referenced using the `-f1` switch. For example you might run:-

```
c:\atrack\setup.exe -s -f1c:\atrack\remove.iss
```

Followed by:-

```
c:\atrack\setup.exe -s -f1c:\atrack\install.iss
```

These two commands could be run from a single batch file. However, if you do this you should use the `-sms` switch to ensure that the first instance of setup has finished before the second one starts. Hence your batch file would look something like this:-

```
c:\atrack\setup.exe -s -sms -f1c:\atrack\remove.iss
c:\atrack\setup.exe -s -sms -f1c:\atrack\install.iss
```
Configuring AutoCAD manually

Note

Registry changes made by either of the following 'manual' methods will not be removed when you uninstall the product and hence we recommend that you allow Setup to configure your AutoCAD system for you.

If you chose not to allow Setup to configure your copy of AutoCAD then proceed as follows…

1. Run AutoTrack from the Start Programs menu which will load AutoCAD and AutoTrack. This will configure your system and you should then be able to see AutoTrack on your AutoCAD menu bar. Henceforth, however you run AutoCAD, AutoTrack should appear on the menu bar.

Alternatively…

1. Run AutoCAD as you normally do.
2. Type `APPLOAD` at the command line.
3. If necessary change the Files of type box to include `*.ARX`.
4. Click the File button and browse to the AutoTrack directory (Normally C:\PROGRAM FILES\AUTOTRACK).
5. Highlight the program file appropriate to your CAD system as follows:-

 For **AutoCAD R14**, Map R2, Map R3, Architectural Desktop, Land Development Desktop and other derivative products load the file **ATRA140.ARX**.
 For **AutoCAD 2000**, 2000i, Map 2000, Map 2000i, Architectural Desktop 2i, Land Development Desktop 2i and other derivative products load the file **ATRA150.ARX**.
 For **AutoCAD 2002**, Map 5, Map 6, Architectural Desktop 3, Architectural Desktop 3.3, Land Desktop 3 and other derivative products load the file **ATRA1506.ARX**.

6. Click Open.
7. Back in the Load/Unload Applications dialog click the Load button and then close the Load/Unload Applications dialog.

8. If you use profiles then make the required profile current.

9. Type AUTOTRACK on the command line. AutoTrack will be loaded and your CAD system will be configured for use.

10. Repeat steps 7 and 8 for other profiles as required.
Configuring MicroStation manually

Setup configures MicroStation to run AutoTrack when run from the AutoTrack for MicroStation desktop shortcut or menu item. AutoTrack can also be loaded manually via the MDL Applications dialog. However, Setup no longer creates a new workspace and no longer adds AutoTrack to the list of Available Applications in other workspaces. If you want to do this then proceed as follows…

1. Run MicroStation as you normally would.
2. When the MicroStation Manager dialog appears go to the workspace area and select the user you want to configure. Set Project, Interface and Style (on versions prior to V8) as you wish.
3. Create or open a file.
4. Select Configuration from the Workspace menu.
5. Select the category Primary Search Paths.
6. To make AutoTrack run in this workspace…
 Click on MDL Applications from the edit box at the top right and then click the Select button. Browse to the LOADERV8 subdirectory of the AutoTrack installation directory and click Add to add it to the list. For example, if you installed AutoTrack to the default directory you should browse to C:\PROGRAM FILES\AUTOTRACK\LOADERV8\ (\LOADER\ on versions prior to V8) and click Add.

 Important
 If you enter the path manually using the Edit button, then note the backslash at the end of the path. This is critical.
7. Click Done to close the box. This will ensure that AutoTrack will run in MicroStation but it will not be listed in Available Applications.
8. To make AutoTrack available in this workspace…
 Click on Visible MDL Applications from the edit box at the top right and click the Select button. Browse to the LOADERV8 subdirectory of the AutoTrack installation directory and click Add to add it to the list. For example, if you installed AutoTrack to the default directory you should browse to C:\PROGRAM FILES\AUTOTRACK\LOADERV8\ (\LOADER\ on versions prior to V8) and click Add.

 Important
 If you enter the path manually using the Edit button, then note the backslash at the end of the path. This is critical.
9. Click Done to close the box. This will make AutoTrack visible to you while running MicroStation but will not load it automatically.
10. Click OK to close the Configuration dialog and allow the system to recognise the new search directories.
11. Now reopen the Configuration dialog by selecting Configuration from the Workspace menu.
12. Select the category Design Applications.
13. **To make AutoTrack autoload in this workspace...**

 Look for ATRACK in the list of **Available Applications**. Highlight the entry and click the **Add** button to add it to the list of **Applications to Load**. This will make AutoTrack load automatically when you start MicroStation with this workspace.

14. Click **OK** to close the Configuration dialog.

15. Restart MicroStation with this user and **AutoTrack** should be on the **Applications** menu and the toolbar should be visible.

16. Repeat the above to configure other workspaces as required.
Resolving hardware lock problems

The Hardware Lock Wizard starts automatically to attempt to resolve hardware lock problems detected whilst running AutoTrack. The wizard should be self-explanatory but in the unlikely event that it is unable to solve the problem please contact Savoy Computing Services for assistance.

The Hardware Lock Manager may be run independently of AutoTrack from the Start, Programs, AutoTrack program folder. This may be necessary if you are installing an update or if you just wish to check the status of your hardware locks.

Running the Licence Manager on the same computer as AutoTrack

AutoTrack can now safely be run on the same computer as the Licence Manager. However, you might need to add the "loopback" IP address to the list of IP addresses to search. This is because machines listening out for broadcast messages sometimes do not respond if the request is local.

To add the "loopback" address

1. Select Hardware Lock Manager from the Start, Programs, AutoTrack menu. The Hardware Lock Manager will appear.

2. Click the Configure Network Settings button. The Network Settings screen will appear.

3. Click Configure Network Settings and add 127.0.0.1 to the list of searched IP addresses.

4. Click the Test Settings button to check that all is well. If not then refer to Identifying and resolving problems.
Running the Licence Manager on a remote computer

AutoTrack may report one of two errors when it runs:-

1. No Free Licences Found.
2. No Licence Manager Found.

Message 1 means that there is not a problem, the licence manager has been found but there are no available licences, try again later. Message 2 means that there is a problem. Refer to the next section, Identifying and resolving problems to fix it.

Identifying and resolving problems

1. Select Hardware Lock Manager from the Start, Programs, AutoTrack menu. The Hardware Lock Manager will appear.
2. Click the Configure Network Settings button. The Network Settings screen will appear.

 Network Settings dialog

3. The Last Status field should indicate the problem. Likely values include:-

 15 - No Active NetHASP licence Manager was found
 This message means that the licence manager could not be found. To fix this, click the Add button and add the IP address of the licence manager computer. This should only be needed if the licence manager is running on a different subnet to the application, i.e. a WAN copy. Having added the IP address, click the Test Settings button to check that it now works.

 If after adding the IP address, the computer is still unable to find the licence manager, then you may have a firewall preventing the system from working. To verify this we suggest that you temporarily disable the firewall and click on the Test Settings button again.

 155 - LM old version was found
 This message means that the licence manager has been found
BUT that it is an old version and needs upgrading. To fix this, download the latest version of the licence manager (v8.31.5.24 at the time of writing) from our web site (www.savoy.co.uk). Go to the Downloads page and select 3rd party software and links. Uninstall the current version from the licence manager machine and install the new version as a service. Note that upgrading the licence manager will NOT stop older versions of AutoTrack from running. Note also that during the upgrade process the licence manager machine may need to be re-booted.

129 - NetHASP key is not connected to the NetHASP Licence Manager
This message means that the only licence manager found does not have a AutoTrack key attached. To fix this, make sure that the key is attached and then carry out the steps to add the IP address of the actual server outlined in the solution to error 15 about.

133 - Number of stations exceeded
This message means that the licence manager has been found but all the licences are in use. Try again later, or use the Licence Monitor to see who is using the licences and get someone to logout.

Technical Support

You may telephone Savoy Computing Services anytime during normal UK working hours on +44(0)1580 720 011. Alternatively you may fax us on +44(0)1580 720 022.

Normal working hours are 9am to 5.30pm GMT, Monday to Friday, except Bank and National Holidays.

If it's out of office hours then you might like to try our web site on which we post details of any known problems and how to work around them. The site can be accessed at www.savoy.co.uk and you can email us at support@savoy.co.uk. Both of these are available from the AutoTrack drop down menu.

Finally, you can contact us by post at Savoy Computing Services Ltd., Clermont House, High Street, Cranbrook, Kent, TN17 3DN, England.
Starting AutoTrack

AutoTrack can be run from within an AutoCAD or MicroStation session, from the taskbar Start, Programs menu or from a desktop icon. In future, when this manual refers to AutoTrack it is using the generic term and what each user will see depends on what version they are licenced to use.

Running stand-alone AutoTrack

1. Click on the Start button on the Taskbar and select AutoTrack for Windows from the Programs, AutoTrack menu or click on the desktop icon AutoTrack for Windows.

2. The first time the software is run you will be asked if it is a demo copy. This message should never appear again.

3. If you have installed a demo copy then you will see the Demonstration Copy dialog. Select which product you wish to evaluate and click Run Demo. If necessary your menus will be reconfigured. See also Demonstration Copy dialog.

 Note
 When you wish to convert this to a full copy simply click the Upgrade button.

4. If you are licenced only to use the Templates Standard version or have chosen to evaluate this product then you will see the first page of the Template Wizard.

 In all other versions you will be placed in the SavoyCAD editor. AutoTrack should be visible on the top menu bar and the toolbar should also be visible.
Demonstration Copy dialog

This dialog only appears if you have installed a demonstration copy of AutoTrack. It allows you to select and change the product you wish to evaluate.

1. Select the product that you wish to evaluate. If you wish to review the combined AutoTrack for Highway Design with Light Rail Design then tick the adjacent check box as well. Similarly with AutoTrack for Airport Design with Light Rail Design.

 Note
 The Airport and Tram libraries are not available in the demonstration version. Instead there is an example of an aircraft and a tram in the Special Vehicles library.

2. To evaluate the selected product click Run Demo.

3. If you want to order a copy then click on the Order a copy button to view a list of dealers and their contact details.

4. If you have already purchased a copy and want to upgrade this demonstration copy to a full copy then click Upgrade.
Running AutoTrack in AutoCAD

AutoTrack can either be run from within an AutoCAD session or from the Taskbar Start Programs menu.

To run AutoTrack from the Taskbar Start Programs Menu

1. Click on the Start button on the Taskbar and select AutoTrack for AutoCAD 2009 (or your alternative CAD system) from the Programs, AutoTrack menu or click on the desktop icon AutoTrack for AutoCAD 2009.

2. The first time the software is run you will be asked if it is a demo copy. This message should never appear again.

3. If you have installed a demo copy then you will see the Demonstration Copy dialog. Select which product you wish to evaluate and click Run Demo. If necessary your menus will be reconfigured. See also Demonstration Copy dialog.

4. AutoTrack paths are only visible to non-AutoTrack users if proxy graphics have been saved with the drawing (for more information, refer to Viewing AutoTrack paths in AutoCAD if you don’t have AutoTrack). In order for these proxy graphics to be saved, several AutoCAD system variables need to be set correctly. If they are incorrect when you start AutoTrack they will be changed and you will be advised on the command line.

5. You will now be placed in the AutoCAD drawing editor. And the AutoTrack menu and toolbar should be visible.

6. If the toolbar is not visible select Show Toolbar from the AutoTrack drop down menu.
To run AutoTrack from within AutoCAD

1. Run AutoCAD as you normally would.

2. If your system has been set up correctly AutoTrack should be on the top menu bar. The AutoTrack toolbar may also be visible. AutoTrack is not yet loaded but will be as soon as you select an AutoTrack command. If the toolbar is not visible then you can select Show Toolbar from the AutoTrack drop down menu to display it.

3. Click any AutoTrack button to load AutoTrack. If you are running a network version for the first time, you may get a Hardware Lock warning. Just confirm that you are running a network version and proceed. The message should not reappear.

Note
By default only the main AutoTrack toolbar is enabled with the other functions available as flyouts. If you prefer to work with the flyouts permanently displayed then click the relevant main toolbar buttons to display them and leave them open when you close AutoCAD. Alternatively on versions of AutoCAD prior to 2006 you may go to View, Toolbars and check the AutoTrack toolbars that you require.

To load and run AutoTrack for AutoCAD manually

1. Run AutoCAD as you normally would.

2. Select Load Application from the Tools menu in AutoCAD or type APPLOAD at the command line. The Load Application dialog will appear. The dialog shown is for AutoCAD 2002 but other platforms are similar.

![Load Application dialog (AutoCAD 2002)](image)
3. Browse to the AutoTrack application directory and select the ARX file appropriate to your CAD system as follows:

- AutoCAD R14 and derivatives use ATRA140.ARX
- AutoCAD 2000/2000i and derivatives use ATRA150.ARX
- AutoCAD 2002 and derivatives use ATRA1506.ARX
- AutoCAD 2004 and derivatives use ATRA160.ARX
- AutoCAD 2005 and derivatives use ATRA161.ATX
- AutoCAD 2006 and derivatives use ATRA162.ATX
- AutoCAD 2007 and derivatives use ATRA170.ATX
- AutoCAD 2008 (32-bit) and derivatives use ATRA171.ATX
- AutoCAD 2008 (64-bit) and derivatives use ATRA17164.ATX
- AutoCAD 2009 (32-bit) and derivatives use ATRA172.ATX
- AutoCAD 2009 (64-bit) and derivatives use ATRA17264.ATX

4. Click the Load button. AutoTrack will load.

5. Now type AUTOTRACK on the command line.

6. If you have installed a demo copy then you will see the Demonstration Copy dialog. Select which product you wish to evaluate and click Run Demo. If necessary your menus will be reconfigured. See also Demonstration Copy dialog.

7. AutoTrack should now be visible on the top menu and the toolbar should also be visible. If the toolbar is not visible then you can select Show Toolbar from the AutoTrack drop down menu to display it.

8. Click any AutoTrack button to load AutoTrack. If you are running a network version for the first time, you may get a Hardware Lock warning. Just confirm that you are running a network version and proceed. The message should not reappear.

Note

By default only the main AutoTrack toolbar is enabled with the other functions available as flyouts. If you prefer to work with the flyouts permanently displayed then click the relevant main toolbar buttons to display them and leave them open when you close AutoCAD. Alternatively on versions of AutoCAD prior to 2006 you may go to View, Toolbars and check the AutoTrack toolbars that you require.
Viewing AutoTrack paths in AutoCAD if you don’t have AutoTrack

In the AutoCAD version of AutoTrack the path entity is a custom object that is calculated and drawn by AutoTrack. Systems must therefore have AutoTrack installed in order to update and maintain these objects.

AutoCAD caters for drawings that contain custom objects without their authoring application being present using a system called proxy graphics. Proxy graphics are similar to an anonymous block containing an exploded version of the custom object. However, the proxy graphics will only be visible if certain system variables are set correctly on both the authoring and receiving systems.

Authoring system

- In order for proxy graphics to be saved with the drawing the authoring system must have the system variable PROXYGRAPHICS set to 1 and INDEXCTRL set to 3. When you start AutoTrack these are set along with PROXYSHOW set to 1 and DEMANLOAD set to 3.

Receiving system

- If the receiving system has AutoTrack installed and the startup system setting Load AutoTrack when opening drawing containing AutoTrack data is switched on, AutoTrack data will be visible just like any other entity. Likewise, if the AutoCAD object enabler is installed then any AutoTrack data will be visible. For more details of the object enabler refer to AutoCAD object enabler.

- If the receiving system either does not have AutoTrack installed, or has AutoTrack installed but Load AutoTrack when opening drawing containing AutoTrack data is switched off, AutoCAD will report the missing application only if the system variable PROXYNOTICE is set to 1. This prompt may give the user options Show proxy graphics and/or Do not show proxy graphics. Note however that if proxy graphics have not been saved with the drawing (see above) then even opting to Show proxy graphics will not make them visible. Note also that if the default was Do not show proxy graphics and you select Show proxy graphics then you will need to issue a REGEN in order to see the objects.

- If you decide not to show the proxy graphics at the start then setting PROXYSHOW to 1 will make them visible after the next REGEN if they are saved in the drawing.
Running AutoTrack in MicroStation

AutoTrack can either be run from within a MicroStation session or from the Taskbar Start Programs menu.

To run AutoTrack from the Taskbar Start Programs menu...

1. Click on the Start button on the Taskbar and select AutoTrack for MicroStation v8 2004 Edition (or your alternative CAD system) from the Programs, AutoTrack menu or click on the desktop icon AutoTrack for MicroStation v8 2004 Edition.

2. When the MicroStation Manager dialog appears, select user workspace ATR8USER (or other workspace that has been configured to run AutoTrack) and create or open a drawing.

3. The first time the software is run you will be asked if it is a demo copy. This message should never appear again.

4. If you have installed a demo copy then you will see the Demonstration Copy dialog. Select which product you wish to evaluate and click Run Demo. If necessary your menus will be reconfigured. See also Demonstration Copy dialog.

5. You will be placed in the MicroStation drawing editor. AutoTrack should be on the Applications menu and the tool frame should also be visible docked on the left.

6. Click any AutoTrack button to load AutoTrack. If you are running a network version for the first time, you may get a Hardware Lock warning. Just confirm that you are running a network version and proceed.
To run AutoTrack from within MicroStation...

1. Run MicroStation as you normally would.

2. Select user ATR8USER (or other workspace that has been configured to run AutoTrack) and open a drawing.

3. If you have installed a demo copy then you will see the Demonstration Copy dialog. Select which product you wish to evaluate and click Run Demo. If necessary your menus will be reconfigured. See also Demonstration Copy dialog.

4. If your system has been set up correctly AutoTrack should be on the Applications menu. The AutoTrack tool frame may also be visible. AutoTrack is not yet loaded but will be as soon as you select an AutoTrack command.

5. Click any AutoTrack button to load AutoTrack. If you are running a network version for the first time, you may get a Hardware Lock warning. Just confirm that you are running a network version and proceed. The message should not reappear.

Note
By default only the main AutoTrack tool frame is enabled with the other functions available as flyouts. If you prefer to work with the flyouts permanently displayed then go to Tools, Toolboxes and check the AutoTrack toolbars that you require.
To load and run AutoTrack for MicroStation manually…

1. Run MicroStation as you normally would.
2. Select MDL Applications from the Utilities menu.
3. Look for ATRACK in the list of Available Applications.
4. If the application is listed then highlight it and click Load. Close the MDL Applications dialog.
5. If the application is not listed then click the Browse button and look in the LOADER subdirectory (LOADERV8 on MicroStation V8) of the AutoTrack installation directory for the file ATRACK.MA. Highlight the file and click OK followed by Load.
6. If you have installed a demo copy then you will see the Demonstration Copy dialog. Select which product you wish to evaluate and click Run Demo. If necessary your menus will be reconfigured. See also Demonstration Copy dialog.
7. AutoTrack should now be visible on the top menu and the toolbar should also be visible.
8. Click any AutoTrack button to load AutoTrack. If you are running a network version for the first time, you may get a Hardware Lock warning. Just confirm that you are running a network version and proceed. The message should not reappear.

Note
By default only the main AutoTrack tool frame is enabled with the other functions available as flyouts. If you prefer to work with the flyouts permanently displayed then go to Tools, Toolboxes and check the AutoTrack toolbars that you require.
The New Features dialog (1975)

If you have an internet connection then you will see the New Features dialog when you run AutoTrack. If you do not see the dialog then it may be because it has been switched off. In this case select **Show New Features** from the AutoTrack, Help drop down menu.

New Features dialog

1. If you are installing AutoTrack for the first time the main window lists the new features add to this major release, e.g. if you are installing v7.60 it will list all new features from version 7.0.

2. If you have just updated from an earlier version the main window lists the new features available since the last version you used. Thus if you update from version 7.0 it will list all new features from that version.

3. If you don’t want to be reminded of new features again then tick **Don’t remind me again**. You can always see check the list again by selecting **Show New Features** from the AutoTrack, Help drop down menu.

4. Some of the items may include links to video clips. To view these simply click the **Show me** link.
The Introduction screen (not AutoTrack Templates)
(1900)

For those who use AutoTrack infrequently we have created the Introduction dialog. By default this appears when you first run the program from the desktop icon.

1. At the top of the screen is the default vehicle. This is the vehicle that you will drive every time you select a Drive command unless you intervene. To change the default vehicle click the Vehicle Library button. When the Library Explorer dialog opens browse the vehicles, select the vehicle you want and click OK.

2. Below that are the three most important drawing settings; forward and reverse speed and drawing scale and units. These and other settings may be changed by clicking the Drawing Settings button.

3. The AutoTrack Tutor is a useful aid if you are still learning AutoTrack. To switch it on click the Tutor button. To view an interactive video tutorial click the Video Tutorial button.

4. Finally, as soon as you are happy with the settings click the AutoDrive Arc button (or Guided Drive button if you are using AutoTrack for Light Rail or Follow button if you are using AutoTrack Lite) to start driving.

5. When you become proficient with AutoTrack you may wish to disable the Introduction dialog by ticking the box Do not show this dialog in future at startup. You can always display it again by selecting Introduction from the AutoTrack drop down menu.
A few do's and don'ts

We have designed AutoTrack to support and interact appropriately with as many of the features of the host CAD system. However, there are a few recommended do's and don'ts that you should bear in mind.

AutoCAD version

- **Do not** save only exploded AutoTrack paths if you are likely to need to edit them in the future.

MicroStation version

- **Do not** save only exploded AutoTrack paths if you are likely to need to edit them in the future.
- **Do not** unlock or edit the AutoTrack cells using other than AutoTrack. Each AutoTrack path is held in one or more specially named locked cells (belonging to the same graphic group) to prevent it being manipulated such that the results are inconsistent with the vehicles capabilities. Unlocking or editing cells will have unpredictable results.
- **Do not** try to edit AutoTrack data in reference drawings - AutoTrack can only access data in the master drawing.
Introduction

AutoTrack’s power and range of features has grown over the years and it is now no longer a single program but a suite of vehicle swept path prediction programs. It was originally developed to meet the need for a means of accurately predicting the space needed to manoeuvre large articulated vehicles. Nowadays, the program can model almost any conceivable vehicle type including vehicles with complex steering arrangements, aircraft and now, following the recent integration of AutoTram, light rail vehicles.

What AutoTrack can and can’t do

Capabilities
AutoTrack integrates completely with your CAD system adding functions that allow you to model vehicle behaviour. You simply select from a wide variety of predefined vehicles and ‘drive’ them through required manoeuvres on-screen. If the required vehicle is not already defined then facilities are provided to define the vehicle and add it into one of the existing libraries for future use.

Note
If you are a new AutoTrack user, or have migrated from a previous version, we strongly recommend that you view the demonstration video supplied on the AutoTrack CD to gain an overview of the product. Then, for a hands-on introduction to using the program refer to the section entitled Worked Example.

Features
A number of features have been incorporated to simplify the user’s task in “driving” a vehicle in this manner without the benefit of the more direct sensory feedback that would be experienced driving the vehicle for real.

It should be noted that the aim of the program is to provide accurate swept path predictions for different types of vehicles and not precise simulations of driving conditions for those vehicles. Thus, the controls have been designed with the emphasis on ease of use rather than realism.

Limitations
Like any engineering design program, AutoTrack has limitations. In fact, the list of factors that AutoTrack ignores is extensive and includes
dynamic effects, wind effects, acceleration and deceleration, sloping road surfaces and slippery road surfaces.

Whilst these factors are by no means irrelevant, if we asked you to supply a weather report, details of the condition of each tyre, a road friction coefficient and full details of the suspension you would probably give up and go back to using templates!

The fact is that AutoTrack is just like any other engineering program in which you design for idealised situations and apply safety factors to allow for real life variations.

This is exactly the way we recommend you use AutoTrack. Use the most onerous vehicles likely in a particular situation and then allow a margin for error on the results. The acceptable margin for error is something for you to assess - if you are lucky it may be the subject of local design guidelines.

Do not expect that just because a particular vehicle in the AutoTrack library can perform a given manoeuvre on your desktop you will be able to replicate it precisely in reality.

Do not assume that any of the AutoTrack defaults are recommendations and if you have a reliable source of data, use it.

It all boils down to USE YOUR ENGINEERING JUDGEMENT.

Migrating from WinTrack

Due to restrictions imposed by Windows Vista support AutoTrack can no longer read WinTrack files directly. If you need to migrate WinTrack files for use with AutoTrack you should install version 7.60 or earlier, open the file and save it. The resulting file supports almost all WinTrack features. Features not supported include:-

- Speed, hand-off and stationery steering reports (planned for a later release)
- Full thickness tyre tread report (although tyre tread reports are read in as normal outer face wheel tracks if there is no outer face report defined)
- Alternative direction symbol shapes (only the chevron shape)
- Automatic grid spacing (however grid spacing may be specified)
- Origin symbol (replaced by axes symbol at bottom left of screen)

Reading pre-v5 AutoTrack libraries

Due to restrictions imposed by Windows Vista support AutoTrack can no longer read library files created using version of AutoTrack prior to version 5. If you need to convert an earlier format library file you should install version 7.60 or earlier, open the file and save it. The resulting file can be read in all versions of AutoTrack.

How to use AutoTrack

AutoTrack is really very simple to use; in most cases you will simply specify your settings, select a vehicle from one of the many provided, position and orient it on your drawing and then drive it through your drawing on-screen. If you need a vehicle that is not listed then you can
create it, add it to your own vehicle library and use it just like those provided.

Each of these is described in detail in the following chapters.

Settings

How you use AutoTrack depends to a large extent upon what you want to do with it. The system is set up with default settings appropriate for a “typical” use. You will need to decide whether these are appropriate for your needs and change them if necessary.

The way a vehicle behaves is controlled partly by the vehicle parameters and partly by the environment in which it is driven. Vehicles once defined should normally be regarded as fixed. The environment settings however can and should be modified to suit your particular situation.

There are various drive modes available each of which can be used interchangeably. Each is appropriate for a particular use and you will need to decide which is best for your needs and indeed this may come down to a simple preference. All but one of the drive modes also have settings that control the way they work.

One of the most frequent causes of problems is that AutoTrack is working in one set of units (say, metres) while your CAD system is working in another (say, millimetres); so before you start work make sure that you set the AutoTrack scale to match your drawing (Refer to Drawing Settings: Scale).

AutoTrack calculates swept paths to a high degree of accuracy based upon the stated algorithms. However, you may wish to allow for the driver error or real world imperfections by modelling a safety or clearance envelope (Refer to Drawing Settings: Reports: Offset Envelope 1).

Modelling rigid vehicles

All drive modes are well suited to modelling rigid vehicles but AutoDrive is likely to give the quickest and best results.

Modelling articulated semi-trailer vehicles

Articulated lorries are best modelled using AutoDrive. Existing users may prefer Manual Drive which requires a degree of skill when reversing. Follow and Script may be appropriate if you are only modelling forwards manoeuvres. If you want to model reverse manoeuvres Script is unlikely to be of much use since it has no intelligence to deal with the over-articulation that will rapidly develop.

Modelling drawbar and multi-trailer vehicles

Multi-trailer vehicles that have more than one articulation point are inherently very unstable when reversing and for this reason they are rarely reversed. We do not encourage the use of AutoTrack to analyse multi-trailer vehicles performing reversing manoeuvres since it can give a false impression of the suitability of the design. Within AutoTrack, AutoDrive will give you good results.
Modelling aircraft

Taxing aircraft are best modelled using either AutoDrive or Follow. Script may also be appropriate if you want to create templates of well-defined simple manoeuvres.

Follow will be appropriate if you want to model an aircraft following existing apron markings. If you want pilot’s eye tracking then you will need to change the Forwards Path Point to Pilot / Driver (Refer to Drawing Settings: Tracking Point). This must be done before you start driving. If your vehicle fails to negotiate a turn then you could try lengthening the segment length (Refer to System Settings: Follow Drive). The further the pilot is offset from the effective front axle the greater this value may need to be.

AutoDrive may be more appropriate if you are trying to determine the position of the apron markings. You will probably use the Forwards Arc option in AutoDrive which tries to drive with the minimum turn arcs and only use Forwards Bearing for long straight sections.

Modelling combination steered vehicles

Linkages have little effect on the most appropriate drive mode. However, rear steered vehicles do not have the benefit of Hands-Off in Manual Drive mode or Forwards Bearing in AutoDrive.

It is only possible to link entire axle groups so the best way to model a single linked axle in a multi-axe group is as a self-steered axle. Set the axle group type to Fixed and check the Self-Steered box on the axle that is linked. By default, with a self steered friction factor of 0.0, the effective axle position will be calculated on the basis of the remaining fixed axles and the wheels on the self-steered axle will turn about the centre of turn of these axles.

Modelling vehicles with pushing tractors

All vehicles must have a single tractor unit but it may be at the front, at the back or indeed, in the middle. In essence the behaviour of such a vehicle travelling forwards is equivalent to the reverse of the vehicle going backwards.

Modelling vehicles with steerable couplings

Some vehicles, notably certain quarrying trucks, have no steerable axles but instead are steered by changing the articulation angle of a coupling. These vehicles can be modelled using the active steerable coupling type.

Modelling Active Hitches

Warehouse vehicles sometimes make use of vehicles with active hitches. Active hitch refers to a rear drawbar axle which is linked to the front axle or coupling. Vehicles that use this type of axle can only be reversed using Manual Drive.

Development & planning scenarios

AutoTrack may be used not only to test scenarios but also to develop alignments from scratch. Used in this way you may find the need to limit the steering angle. This can be done in several ways but arguably the most useful in a development situation is by turn radius. For example, if
you were to adopt a standard curve radius for a residential development; this radius can then be set as the limiting inner wheel radius for all turns and all vehicles.

During the early planning stages of projects you may find that the good old turn template comes into its own. You could use the template wizard to generate templates for important vehicles such as refuse trucks and emergency vehicles and use them to form the basis of your road layouts. As you refine your design you can then use more sophisticated tools to test critical locations. You should bear in mind that turns generated using Script can be edited whereas those generated using the template wizard cannot.

Modelling the effects of super elevation and side friction

AutoTrack now allows you to restrict the turning radius according to super elevation and side friction. This, in conjunction with design speed, means that you can now more accurately predict higher speed paths through junctions or roundabouts. We do however urge caution before modelling high speed manoeuvres using AutoTrack; the dynamics of vehicle motion are too complex for a program of this type to fully model so the fact that AutoTrack can generate a theoretical path does not necessarily mean that it can be driven safely. **USE YOUR ENGINEERING JUDGEMENT.**

Modelling trams and light rail vehicles

You can only model fully rail guided vehicles such as trams using Guided Drive which is available in the light rail version. Generally speaking because the path of the tram is well defined there are fewer options. However because most new tram networks use new tram designs (albeit often heavily based upon existing trams) it is more likely that you will need to define your own vehicles.

Modelling conveyor systems

The Light Rail version can also be used to model certain types of conveyor systems such as are found in vehicle assembly plants.

Fastest line through roundabouts

Follow can be used to check the fastest line through roundabouts. Define the path through the roundabout as a AutoCAD spline, pline or MicroStation complex chain. Set the design speed to the highest permitted and use Follow to generate a non-editable path. AutoTrack will reduce the speed to the maximum possible. The current version does not take into account acceleration and deceleration but it does allow for dynamic effects.

Checking vertical clearances

The Vertical Clearance drive mode may be used to check ground clearance and / or impacts with overhead features such as bridges. Multiple axles are modelled assuming suspension movement. However, the results should be regarded as approximate since the effects of variations in suspension and loading can have a significant effect.
What’s new in version 8?

Version 8 is the first 64 bit version of AutoTrack and is designed to run on 64 bit AutoCAD 2008 & 2009 and 64 bit Windows XP and Windows Vista. In addition we have managed to add a number of new features listed below. All files created with previous versions are fully upwardly compatible.

64-bit compatible
AutoTrack 8 is fully compatible with the 64 bit versions of both Windows Vista and Windows XP.

AutoCAD 2008 & 2009 compatible
The new version is natively compatible with both the 32 and 64-bit versions of AutoCAD 2008 & 2009. AutoTrack detects AutoCAD 2008 & 2009 and derivative products and automatically installs support for them in Express mode.

Play animations backwards
You can now play animations backwards as well as forwards.

Ackerman stub axles
Ackerman stub axles can now be modelled.

Driving convention
There has been a minor change to the way in which we specify the driver position. We used to specify which side of the vehicle the steering wheel was on and now we specify which side of the road you drive on.

Option to fix driver position
An option has been added to allow or prevent the driver or pilot from being moved to the opposite side of a vehicle in accordance with the prevailing driving convention.

Driver shown on vehicle diagram
The driver or pilot is now shown on the vehicle diagram when the Show Datum button is depressed.

Pilot location added to library explorer columns
The driver or pilot location can now be viewed as a data column in the Library Explorer.

Default values highlighted in Library Explorer
Where a data column value displayed in the Library Explorer has not been explicitly defined it is shown in red.

Vehicle library updates
The refuse vehicles in the European Vehicle library have been updated and several fire vehicles have been added. There have also been minor changes to the Specialist Vehicle library and the Airport library.

AutoTrack menu icons in SavoyCAD
The AutoTrack menus in SavoyCAD now have icons.

Improved silent install
The silent install now makes no changes to the user area of the registry if you opt to manually configure the software. This allows the software to be deployed when the users are not logged in.

AutoDrive Bearing alignment picking
If you don’t know the angle you want to turn through when making a turn with AutoDrive Bearing you can pick a line on the drawing you want the vehicle to end up parallel or perpendicular to.

Cockpit tracking point

An alternative to the pilot’s eye tracking point, the cockpit tracking point is always located on the centreline of the aircraft.

Animation acceleration & deceleration (Wishlist prize winner)

An option has been added for vehicles to slow down and speed up realistically at stops or changes in speed. Acceleration and deceleration rates may be changed.

Interchangeable camera angles

The 3D animation camera position can be changed during an animation between previously stored camera positions and/or driver’s eye cameras on different paths.

Wing mirrors (Wishlist item)

You can now add default sized wing mirrors to a vehicle by ticking a single box. The dimensions and position can then be edited if required. The wing mirror location takes into account the driver position if one is specified.

Steering linkages by effective wheelbase

Specify linked steered axles by effective wheelbase as a function of articulation angle, steering angle and/or speed. Also allows you to specify different effective wheelbases for forwards and reverse manoeuvres.

Self steering direction

Specify self steered wheels for forward manoeuvres only, reverse manoeuvres only or in both directions.

Self steering tyre friction factor

Specify the friction contribution of self-steered axles. There is some evidence that, contrary to previous thinking, self steered axles do have an effect on the position of the cut in point. This feature allows you to specify their effect.

New features reminder

In response to a number of cases in which users were unsure of the new features added in an upgrade we have added a reminder dialog based upon user login names.

Tractor body shape

A new body shape has been added to better model the rather unique shape of articulated vehicle tractor units.

Driver / pilot

You can now add a driver at a default location by ticking a single box. The position can then be edited if required. The driver location takes account of the left/right driving convention.

Jet exhaust contour shape

A new shape has been added for jet exhaust contours. The shape allows exhaust temperature and velocity contours to be added by specifying just length and width of the shape.

Full width tyre tracks
An option has been added to show full width tyre tracks (instead of just the loci of the outer faces) for the outermost wheel of each axle. This is to help with modelling guided vehicles.

Steering graph added to report wizard

The steering and articulation graph report options have been added to the report wizard.

Improved Drawing Explorer

A **Replace All** button on the Drawing Explorer now allows you to copy properties to all paths at once.

User definable 3D animation colours

It is now possible to change the colours of individual vehicles in 3D animation.

Different default colours for forward and reverse (Wishlist item)

The forward and reverse reports now have different **default** colours making it easier to understand the manoeuvre.

GripTips in SavoyCAD version

GripTips, similar to ToolTips now appear as you hover over grips on AutoTrack entities in SavoyCAD. The tips list the coordinates of the grip, it’s type and the entity type.

Updated XviD codec

The latest XviD codec (v1.1.3) is bundled with this version.

Improved setup

A **Compact** setup type has been added to the existing **Express** and **Custom**. The new setup type allows you to auto-select the CAD systems but specify user defined options; very useful in silent remote installations.

Additions to aircraft library

The Bombardier DH Dash8 100 & 200 and nine Lektro aircraft tugs have been added to the aircraft library.

Animation single step back

You can now single step backwards as well as forwards through animations.

Updated Adobe Acrobat Reader

Adobe Acrobat Reader 8 is bundled with this version.

Manual layout

If the theory and algorithms used in AutoTrack are new to you then you may wish to read the section entitled Theory before using the program. Thereafter, the remaining sections cover day-to-day use of the program. We do however strongly recommend that you read the section entitled Worked Example which will give you a fast introduction to the program and get you productive as quickly as possible.

The troubleshooting section deals with some of the more common problems.
Notation conventions
Throughout this manual key depressions are shown enclosed by angle brackets thus enter <F> means type the letter F and <OR> means type the letters O and R.

Menu options or commands are printed in a bold font.

Messages displayed by AutoTrack are printed in italics.

Text that you should type and filenames are shown in a courier font.

All screen images and functionality descriptions are for AutoTrack running on Windows XP. The screen image may vary slightly on other platforms. If functionality is different for other platforms the variations are noted.

Mouse conventions
Windows allows mouse button functionality to be reversed for left handed users. AutoTrack features a similar option. Rather than repeatedly catering for all possible configurations we have adopted the convention of using the default functionality. Thus if you have configured your mouse for left handed use then for left mouse button read right mouse button and vice versa.

Default values
Throughout the program default values are displayed in red and have an asterisk alongside them. Enter any non-zero value to overwrite the default. Enter zero to reset them to the default.

Getting help
If the user manual is not available try one of the alternatives.

Context sensitive on-line help
The extensive context sensitive on-line help mirrors the manual, but has the powerful windows search facilities. To get help click the Help button on any dialog or press F1.

Help is also available from the drop down menus:-
Select Help, AutoTrack Help to get a structured breakdown of the help text.
Select Help, About AutoTrack to check the program module versions.

On-line assistance
If you find what you think is a bug and wish to email support for assistance select Email Savoy Computing for assistance from the Help menu.

You can check for updates by selecting Check website for AutoTrack updates from the Help menu.
Help tutor

The AutoTrack Tutor is an AutoTrack help window that is displayed permanently in a convenient location on your desktop. The text updates as you move through the program. You can enable the help tutor at any time by clicking the Tutor button on the AutoTrack toolbar. We recommend that you set it to remain in the foreground at all times.

Video tutorial

The AutoTrack video tutorial is a multi-media presentation designed to get you started with AutoTrack quickly. Video clips show you how to use AutoTrack to perform various tasks. It may be viewed as a continuous presentation or you may use the navigation buttons to view selected clips.
This chapter is intended to give you an understanding of how vehicles turn and how AutoTrack is able to calculate the swept paths of highly complex vehicles using a simple mathematical model.

Introduction to theory

In order to calculate the path of a given vehicle it is reduced to an equivalent vehicle comprising a series of articulated elements each comprising a rigid chassis and a single rear axle. The towing unit is controlled by the user.

The path of the vehicle is derived by calculating, for each element in turn, the position of that element’s trailing wheels for a displacement of the front of the element.

Assumptions

To derive suitable path prediction algorithms certain assumptions must be made. These assumptions are listed below:-

1. No skidding or tyre slippage.
2. Tyre contact is infinitely small (i.e. point contact).
4. Steered wheels on fixed axles are controlled by a perfect linkage of the Ackerman type.
5. Drawbar trailers have a single axle at the drawbar end.
6. Kerb-to-kerb turning circle radius is the same for left and right lock.

The following sections show how AutoTrack copes with more complex real life vehicles.
Theoretical path of a single front steered element

Using assumptions 1 and 2 it may be seen that the front of a vehicle with an imaginary central steered wheel which is set to a constant angle, alpha, follows a perfectly circular path. This is because this wheel always points along a tangent to a circular path (see figure Theoretical path of a single front-steered element below). The Ackerman linkage referred to in assumption 4 ensures that the inner and outer steered wheels follow paths concentric to that of the imaginary steered wheel.

Furthermore, it may be seen from the above figure (Theoretical path of a single front-steered element) that the rear wheels of this vehicle always follow circular paths concentric to those traced out by the front wheels.
Theoretical path of an element with front and rear steering

Extending the principle outlined above it may be seen that the rear steering wheels of a vehicle with combined front and rear steering follow circular paths concentric to those traced out by the front wheels while the steering angle is constant. See figure below (Theoretical path of an element with front and rear steering).

In fact, in steady state every point on the vehicle traces an arc which is concentric to that traced out by the front wheels. There is one point on the spine of the vehicle at which the spine forms a tangent to the circular arc along which it is travelling. This point is called the Cut-in Point and the radius of the arc traversed by this point is referred to as the Cut-in Radius. The location of the cut-in point is constant for a given front/rear steering relationship when the linkage is proportional to the tangents of the angles. If the linkage is proportional to the angles themselves then the cut-in point moves along the vehicle.

In the limit, (i.e. when the maximum steering lock is applied), the cut-in point describes an arc whose radius is a minimum. This radius is referred to as the Minimum Cut-in Radius.
Prediction algorithm

The algorithm used to predict the path of the vehicle in accordance with the previous two sections and is based upon the geometric construction shown in the figure below (Prediction algorithm).

The new position of the effective front axle of the lead vehicle is calculated from the equation of a circle.

Then the mid-point of the chord drawn between the two positions that mark the start and end of the step is calculated. The new cut-in point falls on the imaginary line connecting this point to the old cut-in point. The exact position is the intersection of this line with an arc whose centre is the new front axle position and whose radius is equal to the effective front wheelbase.

It can be proved that this construction gives an exact result for situations where the steered wheels are set to a constant angle.

Paths of towed elements

The behaviour of trailers is modelled in exactly the same way as for a front steered element with one notable exception. Instead of the position of the front of the towed element being found explicitly as a position one step length along a circular arc, this position is defined by the new position of the king-pin of the vehicle element in front of it.
The position of the rear wheels of the element is derived as described in the previous section (*Prediction algorithm*), and again the construction is precise if the front of the element is following a constant circle.

Note

Assumption 5 enables drawbar trailers to be modelled as consisting of two standard trailing elements.

Turning circle radius and steering angle

Data on vehicle manoeuvrability is normally given in terms of their minimum kerb-to-kerb turning circle radius. This is the radius of the minimum circle that the outside edges of the wheels of the vehicle can describe. Consideration of the concentric circles traced out by the wheels of a vehicle (see figure *Theoretical path of a single front steered element*) shows that this parameter is itself inextricably linked to the wheel base of the vehicle, the front and rear track widths and the front and rear maximum steering angles.

Vehicles are steered in AutoTrack by setting the angle of an equivalent central steering wheel to a value which must not be greater than the maximum possible. The maximum value for the steering angle is calculated from the above parameters.

Time related aspects

Up till now we have discussed simply the geometric relationships that allow us to calculate the way in which the vehicle moves. However, other factors allow AutoTrack to model vehicle movement at various speeds.

Design speed

A vehicle’s ability to respond to changing steering angles varies according to the speed at which it is travelling. Thus, if we assume that it takes the same time to turn the steering from lock to lock at all speeds then, since at higher speeds the vehicle travels further in that time, the turning circle transcribed must increase with speed.

AutoTrack models manoeuvres at fixed but user-definable speeds. The speed used to perform a given manoeuvre is referred to as the Design Speed. The speed at which the manoeuvre is performed on-screen is unrelated to the design speed and will vary according to the speed of the computer processor.
Rate of application of steering lock

The rate at which the steered wheels can be turned also affects the vehicle’s turning performance. As the rate of application of steering lock increases, so turning performance improves.

AutoTrack allows the rate of application of steering lock to be based upon a lock to lock time or a lock to lock distance. Internally, a value based upon distance is used.

Lock-to-lock distance

Lock-to-lock distance is the distance that the vehicle must travel in order to turn the steering from full lock in one direction to full lock in the opposite direction in a single continuous movement. This is regarded as a model setting and not a vehicle parameter.

Lock-to-lock time

Lock-to-lock time is the time that it takes the driver of the vehicle to turn the steering from full lock in one direction to full lock in the opposite direction in a single continuous movement.

Normally, the lock-to-lock time should be set to a non-zero value to reflect the finite length of time that it takes to turn the steering in reality. Advice from various sources suggests that a value between three and six seconds is reasonable for most conventional vehicles. This is regarded as a vehicle parameter as opposed to a model setting.

How the lock-to-lock rate is calculated

If the steering rate is being limited by lock to lock distance, AutoTrack calculates the rate at which lock can be applied by dividing the maximum angular range of the steering by the lock-to-lock distance.

Alternatively, if steering is to be limited by lock to lock time, AutoTrack calculates the rate at which lock can be applied by dividing the maximum angular range of the steering by the lock-to-lock time multiplied by the design speed.
Designing for minimum tyre wear

For a given vehicle the degree of tyre scrub (and therefore wear) decreases with increasing speed and increases with increasing rate of application of steering lock. As a result, operators of large vehicles often have preferred minimum manoeuvring speeds in order to avoid excessive tyre wear resulting from large steering movements at very slow speeds. In practice, however, it is perfectly possible for most vehicles to turn their steering whilst they are travelling very slowly or even stationary (especially with power steering).

If you wish to model the behaviour of a vehicle whose steering can be applied whilst the vehicle is stationary you can remove all steering rate limits. Any changes to the steering angle will then be instantaneous.

Hint

You may find it difficult to control the vehicle if you remove all steering rate limits so try setting a distance based limit and setting a very short distance of, say, 1m. The decrease in manoeuvrability will be minimal but the vehicle will be easier to control.

Inertia

AutoTrack models vehicles travelling at constant speeds and so avoids the problems associated with acceleration and deceleration forces. However, it is possible for the user to change the design speed part way through a manoeuvre. This change is instantaneous. For this reason it is recommended that the design speed is not changed part way through a turning manoeuvre.

Furthermore, AutoTrack takes no account of tyre side slip and skidding due to centrifugal forces that occur when travelling around corners.

Multiple axles

AutoTrack assumes a single front and rear axle. However, vehicles comprising more than one front and/or rear axle may be modelled by considering equivalent single axles.

Steered axles

Multiple steered axles are normally designed using a linkage of the Ackerman type. This type of linkage adjusts the amount by which each wheel in a given group is turned so that they all follow concentric arcs.

It is therefore possible to calculate the path of the vehicle correctly by considering the turning circle radius and track relating to any of these axles in isolation. However, for our purposes we are interested in the outermost tyre track and since this is always generated by the front axle (assuming that all axles in the group are the same width) this axle should be selected as the effective axle. This is the case if you allow AutoTrack to calculate the effective steered axle unless you specify an alternative.
Fixed axles

The wheels on multiple fixed axle arrangements are always subject to sideways forces and therefore some sideways skidding.

If we consider a pair of identical fixed axles (which are theoretically subject to equal and opposite sideways skidding) it is evident that the theoretical position of an equivalent single axle is mid-way between the two. This position should therefore be selected as the effective axle under ideal circumstances.

Similar reasoning may be applied to the general case of any number of non-identical fixed axles in which case it is reasonable to assume that the theoretical position of an equivalent single fixed axle is the centroid of the tyre contact area. In fact, this is exactly how AutoTrack calculates effective fixed axles unless you specify an alternative.

In reality, however, circumstances are rarely ideal and the position of the effective axle can vary due to many other factors including road surface, tyre condition, vehicle loading and even driving technique (see also Accuracy). In such cases it may be considered prudent to accept the more conservative path that results from assuming that the rearmost axle is the effective axle.

Note
Although steered wheels follow an absolute path defined by the turning circle, fixed wheels will cut in to a lesser or greater degree depending upon whether the wheelbase is artificially shortened or lengthened, respectively.

Varying track widths

AutoTrack allows not only different front and rear track widths but also varying axle widths within an axle group. As a result there is no need for any calculation or assessment of equivalent widths.

Hands-off

When a front steered vehicle travels in a circle the front wheels have a natural tendency to continue travelling on a path tangential to the circle. This tendency is often utilised (contrary to accepted good driving practice) by drivers of all types of vehicles, to rapidly straighten out of a corner.

AutoTrack includes a ‘hands-off’ feature that simulates this capability. When in hands-off mode the steered wheels continue on their current heading instead of responding to any steering lock which may currently be applied.

Note
This feature only functions when the front wheels (appropriate to the current direction of travel) are steered.
Accuracy

AutoTrack performs calculations internally using double precision mathematics making it very accurate. However, there are factors related to the real world environment in which the vehicle will operate that can influence the reliability of the results.

Errors in path of steered wheels due to varying conditions

The radius of the minimum turning circle is explicitly specified by the user as a vehicle parameter and simulations of turns made at full lock exactly reproduce this input. Therefore, although the assumptions made in deriving the prediction algorithm imply that no skidding occurs, some allowance for condition related skidding can be made by alteration of the minimum turning circle radius.

It should be noted that most published material on minimum turning circles for vehicles is given for manoeuvres carried out by an unladen vehicle on a dry surface. Limited experimental tests\(^2\) on selected vehicles have shown that these turning circles do vary somewhat for other conditions and it is suggested that, in order to allow for this, adjustments be made to vehicle specifications in accordance with the results of the tests. These are presented in the figure below (Variation in turning circle with conditions for articulated vehicle).

<table>
<thead>
<tr>
<th>Type of Vehicle</th>
<th>Condition</th>
<th>Increase in Minimum Turning Circle Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Rear Axes</td>
<td>Full Load</td>
<td>Up to 0.5m</td>
</tr>
<tr>
<td></td>
<td>Wet Surface</td>
<td>Up to 1.0m</td>
</tr>
<tr>
<td></td>
<td>Full Load &</td>
<td>Up to 1.5m</td>
</tr>
<tr>
<td></td>
<td>Wet Surface</td>
<td></td>
</tr>
<tr>
<td>Single Rear Axle</td>
<td>Full Load</td>
<td>Negligible</td>
</tr>
<tr>
<td></td>
<td>Wet Surface</td>
<td>0.1m</td>
</tr>
</tbody>
</table>

Variation in turning circle with conditions for articulated vehicle

Note

These experimental results relate to a specific vehicle and are only offered as guidance.
Errors in path of trailing wheels due to varying conditions

No experimental data is available that quantifies changes to the amount of cut-in of the rear wheels of a vehicle under varying conditions.

Warning
Users should be aware that increasing the minimum turning circle radius as described above, has the secondary effect of reducing cut-in. This can be restored to its original value by extending the wheelbase in proportion to the increase in turning circle (to first order accuracy).

Errors due to algorithm limitations

The algorithms used to determine the paths predicted by AutoTrack have been proven to be exact for conditions satisfying the assumptions listed in the section entitled Assumptions and for constant steering angles.

AutoTrack uses approximation techniques to cope with conditions of changing steering angle and we have shown that the results generated by these techniques are unaffected by compatible changes in other vehicle or program parameters.

AutoTrack stores data at a frequency specified by the user. Subsequent reports may then only be generated at multiples of this spacing. This means that reports are always based upon first generation calculations. As a result however, if the storage frequency is set too low then some reports (notably the evenly spaced body outlines) may appear disjointed.

The user should note that steering angle changes not only refer to the steering of the lead vehicle but to any component of the vehicle train. For example, the steering angle of a standard trailer component is defined by the relative orientations of the trailer and its towing vehicle.
References

In developing AutoTrack reference has been made to the following documents:-

10. Freight Transport Association (1999), "Designing for Deliveries".
16. Freight Transport Association (2006), "Designing for Deliveries".
Settings

Settings Wizard

The Settings Wizard is designed to help new and infrequent users to configure AutoTrack correctly. The wizard does not allow you to edit all settings but on every page there is an Advanced button that takes you to the Settings tabbed dialog.

Also on every page is a Finish button. This applies any changes made so far for the current session only. If you want to make the changes apply to future sessions you should click Next until you get to the Finish page.

1. Select Settings from the AutoTrack drop down menu or click the Settings button on the AutoTrack toolbar or type ATRASETTINGS on the command line. The Settings Wizard will appear.

2. Click the Advanced button to go directly to the advanced settings dialog.

3. Click Next to move to the next page.
Settings Wizard: Scale

1. Set the drawing units.

2. We recommend that you tick **Auto check scale against window size** since this will warn you if your scale appears to be wrong.

3. Click **Next** to move to the next page.
1. The vehicle editing units determine the units used to display vehicle data.

2. Use the drop down list boxes to set your preferred units for distance, speed and angles.

3. Click **Next** to move to the next page.
Settings Wizard: Layers

1. If you are using a CAD system that does not support layer naming then you will not see this page.

2. We recommend that you tick **Use a layer naming convention** so that objects you create are placed on separate named layers. Note that if you tick this option in the wizard it will set the Savoy Basic naming convention. If you want to set another convention click on the **Advanced** button and do so in the advanced settings dialog.

3. Tick **Prompt for a layer name** to be offered the opportunity to change the layer name before the object is placed.

9. Click **Next** to move to the next page.
1. In reality it is not good driving practice to turn the steered wheels whilst the vehicle is stationary. We therefore recommend that you limit turn rates. To do this tick Limit forward turn rate or Limit reverse turn rate.

2. The most realistic way to limit turn rates is by lock to lock time. So if, for example, you tick Limit forward turn rate then the steering rate criteria is automatically set to Limit by lock to lock time. Likewise for Limit reverse turn rate.

3. You can remove steering rate limits by unticking Limit forward turn rate but if you want to adopt different limiting criteria click the Advanced button and do so in the advanced settings dialog.

4. Click Next to move to the next page.
Settings Wizard: Design Speed

1. The design speed can affect the turning capabilities of the vehicle if you have limited turning by lock to lock time.

2. Even if you do not have selected speed related turn transitions the design speed will affect the animation speed.

3. Click **Next** to move to the next page.
1. You can limit the steering in three ways mutually inclusive ways, i.e. you can switch them all on and AutoTrack will determine the most onerous case and use that.

2. Tick **Limit steering to percentage** and edit the value to prevent the steering from exceeded the stated percentage of its maximum lock capability. Note that this is the only way to limit the steering lock in a vehicle independent way.

3. Tick **Limit steering to angle** and edit the value to prevent the steering lock exceeding a specified angle (in either direction).

4. Tick **Limit steering to radius** and edit the value to prevent the steering lock exceeding a value that would cause the vehicle to turn tighter than the specified radius. Note that you can specify where the radius is measured, Inner wheel, Inner body, etc.

5. Click the **Advanced** button to set these values in the Model Settings dialog (see Drawing Settings: Model (not Light Rail version)).

10. Click **Next** to move to the next page.
Settings Wizard: Articulation Limits

1. You can limit the articulation angles in two ways mutually inclusive ways, i.e. you can switch them all on and AutoTrack will determine the most onerous case and use that.

2. Tick **Limit articulation to percentage** and edit the value to prevent the articulation angles from exceeding the stated percentage of their maximum capability. Note that this is the only way to limit the articulation angles in a vehicle independent way.

3. Tick **Limit articulation to angle** and edit the value to prevent the articulation angles exceeding a specified angle (in either direction).

4. Click the **Advanced** button to set these values in the Model Settings dialog (see Drawing Settings: Model (not Light Rail version)).

5. Click **Next** to move to the next page.
Settings Wizard: Dynamics

1. If you are modelling turns at faster than about 15kph dynamic effects become significant. When you make a turn at higher speed the limiting criteria may be driver comfort rather than vehicle geometry. We recommend that you tick **Limit turning for dynamic effects** when modelling higher speed turns.

2. The wizard only allows you to select from published criteria, if you want to define your own criteria click the **Advanced** button and do so on the advanced settings dialog.

3. Click **Next** to move to the next page.
Settings Wizard: Updates

Settings Wizard: Updates

If you have an internet connection AutoTrack can check for updates automatically. This ensures that you are aware of new versions as soon as they become available and gives you the opportunity to download and install them.

We recommend that you allow AutoTrack to check for updates:

- Check for updates every 10 days

Click Next to continue

Settings Wizard: Updates

1. If you have an internet connection AutoTrack can check for updates for you. Tick Check for updates to enable this feature and enter the frequency of checking. If you enter zero AutoTrack will check for updates every time it is run.

2. Click Next to move to the next page.
Settings Wizard: Finish

1. If you don’t want to have to keep changing these settings every time you run AutoTrack then select **Use these settings for this and all future sessions**. Otherwise, select **Use these settings for all new paths in this session only**.

2. Click **Finish** to confirm your selection.
The Report Wizard is designed to help you setup your AutoTrack reports correctly. It can actually be used to create or edit either your default reports or reports associated with existing paths.

The wizard does not allow you to edit all settings but on every page there is an **Advanced** button that takes you to the Reports tabbed dialog.

Also on every page is a **Finish** button. This applies any changes made so far for the current session only. If you want to make the changes apply to future sessions you should click **Next** until you get to the Finish page.

1. Select **Report Wizard** from the AutoTrack drop down menu or click the **Report Wizard** button on the AutoTrack toolbar or type **ATRAREPORTWIZARD** on the command line. The Report Wizard will appear.

2. Click the **Advanced** button to go directly to the Drawing Settings: Reports dialog.

3. Click **Next** to move to the next page.
Report Wizard: Start (3700)

1. The wizard only allows you to edit one report at a time. If you have more than one report defined they will be listed in a drop down list box and you must select which report you want to change.

2. The current visibility is displayed under the drop down list.

 If the report is not currently visible:-
 Tick Report visible to make the report visible. If you want to hide all the other reports then tick Exclusively. This is the quickest way to switch between reports.

 If the report is currently visible:-
 Untick Report visible to hide the report. This will not affect any other reports listed so you may then want to select another report to show.

3. Click the New button to add a report to the list. The new report will be selected and you should then use the wizard to set it up as you require.

4. When you have finished your manoeuvre you may want to untick Construction lines to reduce the clutter. If you want to change which construction lines are displayed or their colour, either continue through the wizard to the relevant page or click the Advanced button and use the Drawing Settings: Reports dialog.

5. If you want to enable other combinations of reports click the Advanced button.

6. Click Next to move to the next page.
Report Wizard: Graphical sub-reports

(3710)

Report Wizard: Body Outlines

You may want to enable elements of the report if buildings, walls or other high objects restrict the movement of the vehicle.

- I want to display Body Outlines as follows:
 - All pages except Body Outlines have a further option, At all body positions, to display them at all positions at which a body outline is drawn.
 - The attributes buttons on the right show the line colour and style. Click on the button to change these in the Report Attributes dialog.
 - If the page has an envelope option and you want to set the hatch spacing or angle or if you want to define an offset envelope click the Advanced button.

1. Select where you want this element using the tick boxes.
2. All pages except Body Outlines have a further option, At all body positions, to display them at all positions at which a body outline is drawn.
3. The attributes buttons on the right show the line colour and style. Click on the button to change these in the Report Attributes dialog.
4. If the page has an envelope option and you want to set the hatch spacing or angle or if you want to define an offset envelope click the Advanced button.
5. Click Next to move to the next page.
Report Wizard: Path Annotation

This report allows you to annotate the path with the vehicle name at discrete positions and/or the path number at regular intervals. If you want to change the text, click the Advanced button.

1. Select where you want this element using the tick boxes.
2. The vehicle name is displayed at all discrete locations selected and the path number is displayed at a regular spacing if selected.
3. The attributes buttons on the right show the line colour and style. Click on the button to change these in the Report Attributes dialog.
4. If you want to set display something other than the vehicle name or the path number, click the Advanced button.
5. Click Next to move to the next page.
Report Wizard: Steering & Articulation Graph

Report Wizard: Steering & Articulation Graph

1. Select the elements you wish to see by ticking the appropriate boxes.

11. The attributes buttons on the right show the line colour and style. Click on the button to change these in the Attributes dialog.

12. To change other aspects of the steering graph click the Advanced button.

13. Click Next to move to the next page.
Report Wizard: Construction Lines

1. Tick the construction line that you want to see.

 Note
 Construction lines tend to clutter the finished drawing so we normally suggest that you switch them off.

2. The attributes buttons on the right show the line colour and style. Click on the button to change these in the Report Attributes dialog.

3. To switch off all construction lines untick I want to display the following construction lines.

4. Click Next to move to the Finish page.
Report Attributes dialog

1. Select the **Colour** from the drop down list of 254 pens. To set a custom colour select {custom} and click on the colour swatch.

2. Select the **Line type** from the drop down list. The line types listed are those currently available in your CAD system. If you wish to add a line type you should cancel this dialog and create the line type in your host CAD system.

3. Select the **Line weight** from the drop down list. Note that line weights are real world dimensions so if you select a line weight of 2mm the object will be drawn with 2mm thick lines.

Attributes dialog

1. Select the **Colour** from the drop down list of 254 pens. To set a custom colour select {custom} and click on the colour swatch.

2. Select the **Line type** from the drop down list. The line types listed are those currently available in your CAD system. If you wish to add a line type you should cancel this dialog and create the line type in your host CAD system.

3. Select the **Line weight** from the drop down list. Note that line weights are real world dimensions so if you select a line weight of 2mm the object will be drawn with 2mm thick lines.
Report Wizard: Finish

1. If you don’t want to have to keep changing these settings every time you run AutoTrack then select **Use these settings for this and all future sessions**. Otherwise, select **Use these settings for all new paths in this session only**.

2. If you have a path selected then a third option will be displayed, **Use these settings for the selected path only**. This allows you to quickly change the report properties for the selected path.

3. Click **Finish** to confirm your selection.
System Settings

The AutoTrack System Settings control the default behaviour of AutoTrack in all drawings on the CAD system. The settings are displayed all at once on a single tabbed dialog.

1. Select System Settings from the AutoTrack drop down menu or click the System Settings button on the AutoTrack toolbar or type ATRASYSTEMSETTINGS at the command line. The System Settings dialog will appear.

2. Click the appropriate tab to edit or view the settings.

3. Edit the data as required and click OK to confirm when you are satisfied. Click Cancel to abort all changes and close the System Settings dialog.

4. Click Make Default to save the displayed settings as defaults for the next session. Click Reset to restore your last saved default settings following changes.

1. Click on the Start-Up tab.

2. Tick **Show disclaimer** to display the disclaimer at the start of each session.

3. By default all settings are stored in the Settings subdirectory of the application directory. This means that changes made by one user affect all others. To instead store the program settings in each users My Documents data folder, tick **Store settings in Users “My Documents” folder**. Note, however, that your computer may still be configured so that the My Documents folder is a common area.

4. Should you wish to apply common settings for all users but wish to disallow write access to the application tree you can edit the file `ATRACK.INI` in the `SETTINGS` subdirectory of the AutoTrack installation directory. Open the file in a text editor and find the line `[SETTINGS]`. If this line does not exist add it at the bottom of the file. Then add or edit the line `INIFILEDIR=` to point to the required directory.

5. Tick **Save library changes on leaving library explorer** if you want AutoTrack to automatically update the library files with any changes when you leave the library explorer. If you do not tick this box you will be asked if you want to update the library file every time you close the library explorer.

6. Tick **Force menu to be visible** to load the AutoTrack menu at start-up. If you do not check this box, and the AutoTrack menu is unloaded, you will need to load AutoTrack (which includes the menus) manually by typing `AUTOTRACK` (or `ATRACK`) on the command line.

7. Tick **Register commands** to ensure that AutoTrack commands are recognised by your CAD system. We strongly recommend that you leave this box ticked. If this box is not ticked you will need to load the AutoTrack
executable manually using the Load Application command in AutoCAD (see Configuring AutoCAD manually).

8. By default AutoTrack is initialised if you load a drawing that contains AutoTrack entities. If you do not want this to happen untick **Load AutoTrack when opening drawings that contain AutoTrack data.**

9. By default AutoTrack automatically loads all AutoTrack vehicle libraries and standards (*.AT*) that it finds in the **LIBRARY** subdirectory of the AutoTrack installation directory. This behaviour can be modified so that AutoTrack only loads selected libraries and standards from specified locations by adding them to the list entitled **Automatically load these vehicle libraries and parking standards.**

Note
AutoTrack only auto loads libraries or standards that you are authorised to use, i.e. that you have purchased.

10. Click the **File** button and browse to find the required library or standard. Click **Open** when you find the file and it will be added to the list.

11. Click the **Directory** button and browse to find the required directory. Click **OK** when you find the directory and it will be added to the list.

12. Click the **Remove** button to remove entries (individual libraries or complete directories) from the list. You cannot remove the last entry from the list so to change the default library location you should add the new location and then remove the existing location.

13. Click the **Load Now** button to load newly added libraries or standards without having to restart AutoTrack.

14. The **Master Reset** button allows you to reset all the settings for all versions of AutoTrack to the AutoTrack built-in defaults. The existing settings directory is renamed with a date and time stamp. If you need to restore previous settings then simply replace the Settings directory with the appropriate archived directory. Note that the new settings only take effect when the software is restarted.
System Settings: Language (2010)

1. Click on the Language tab.

2. By default AutoTrack detects the input locale setting on your computer and uses this to determine the language to use.

3. However, if you want to force AutoTrack to use a particular language then select it from the drop down list. The menus and dialogs will change as soon as you click **OK**.

4. Currently the languages are limited to dialects of English, namely English (British) and English (American) and French.

5. If you find that with the language set to (AutoDetect) some words are spelt incorrectly you may have your Input locale set wrongly in Windows Control Panel, Regional Settings.
System Settings: Network

1. Click on the Network tab.

2. Tick **Obtain licence from a networked hardware lock** if you want AutoTrack to look for a free network licence.

3. AutoTrack will always look for a local hardware lock (i.e. a single user lock) first and use that if one exists. If you want to disable this feature then tick **never check for single user hardware locks plugged into this computer**.

4. By default AutoTrack will search for available licences on your subnet. If it finds one it will use it and add the IP address to the search list. Next time you start AutoTrack it will look for a licence first on the computer that it found the licence last time. If it fails to find a free licence it will re-search your subnet. Again, if it finds one on another computer it will add its IP address to the search list. We recommend that you use this default functionality. If you want to add an IP address to the search list manually click the **Add** button and enter the address. To delete an IP address from the list highlight it and click **Remove**.

 Note
 The network version is licenced for use only on local area networks, i.e. all copies must be on the same subnet.

5. If you wish to change the default functionality tick **Manage these settings manually**.

6. If you want AutoTrack to add new IP addresses to the search list tick **Add IP addresses to the above list automatically**. In most cases this option will enable AutoTrack to find a network licence faster.

7. If you want AutoTrack to search the subnet for a licence if it fails to find a licence at one of the specified IP addresses then tick **Enable broadcast search for licence manager**. We strongly recommend that you leave this option ticked.
Warning
If you manage the settings manually and untick both Add IP addresses to the above list automatically and Enable broadcast search for licence manager and if there are no IP addresses in the search list or if they are wrong AutoTrack will never find a licence.

8. Click Test Settings to check that the settings can find a licence. Last status displays the results of the last search for a network licence.

Releasing network licences
Occasionally you may need to release a network licence to allow someone else to use AutoTrack on another computer.

1. To release a network licence select Release network licence from the AutoTrack, Utilities drop down menu.
System Settings: Updates

AutoTrack is able to log onto the internet and check for newer versions of itself automatically at regular intervals dictated by the user. By default this feature is switched off but the user is offered the opportunity to switch it on when the first automatic check is due. Update checking may have been restricted by your system administrator.

1. Click on the Updates tab.

2. Click the Check for updates now button to access the internet and check for updates immediately. If an update is available the AutoTrack Updates dialog will appear. See AutoTrack Updates dialog below.

3. Tick Check for updates automatically on startup to have AutoTrack check for newer versions at regular intervals when AutoTrack is started. Note that the check is performed when AutoTrack starts and not when the CAD system starts.

4. Enter the frequency of checking in days in the Check for updates every field. If you want AutoTrack to check for updates every time you run the program set the frequency to zero.

5. Tick Remind me to install downloaded files when I start AutoTrack to be reminded, every time you start AutoTrack, if you have downloaded a newer version but not yet installed it.

Note 1
If the Check for updates automatically on startup tick box is disabled automatic update checking may have been disabled by your system administrator.

Note 2
If the Check for updates now button is disabled all update checking may have been disabled by your system administrator.
AutoTrack Updates dialog

1. The AutoTrack Updates dialog lists the main changes to AutoTrack since the version you are currently running.

 AutoTrack Updates

 There is a new version of AutoTrack available which has already been downloaded.

 The latest version is v7.6dc

 New features available by updating to v7.6dc
 - Support for AutoCAD 2008 and derivative products and automatically installs support for these in Express mode.
 - Updated Australian Design Vehicle Library
 - The Australian vehicle library has been updated to include 2006 AUSTROADS design vehicles and special vehicle clearance models.
 - Updated New Zealand Design Vehicle Library
 - The New Zealand vehicle library has been updated with special vehicle clearance models.
 - Updated US Design Vehicle Library
 - The US vehicle library has been updated with the addition of the Imperial units version of the CALTRANS Design Vehicles.
 - Updated RTID code
 - The latest RTID code is bundled with this version.

 AutoTrack Updates dialog

 2. Click the **Download** button to download the file to the *My AutoTrack Data\Updates* subdirectory of your *My Documents* folder. Note that while the file is downloading you will be unable to use other functions in your CAD system. Users with slow connections may therefore prefer to logon to the web site at a more convenient time.

 Warning

 If your company has a policy of central software control then you may have restricted access. This means that you will not be able to download the software but instead should refer to your system supervisor.

 3. As soon as the download has finished, or if you have previously downloaded the new version but not yet installed it, the **Install** button will be enabled. Click the **Install** button to install the new version. The current session will be closed while the new version is installed.

 4. Tick **Don’t remind me again** (only visible when checking was automatic) and click the **Close** button if you don’t want to be reminded of updates in future, i.e. to switch off automatic update checking.
System Settings: View

1. Click on the View tab.

![System Settings dialog: View tab]

2. By default AutoPan moves the drawing so that the vehicle wheels are pointing directly at the centre of the screen and are positioned a distance of 50% of half the screen height from the centre of the screen. This allows you space to continue the manoeuvre. You can set the distance from the centre of the screen at which the vehicle is positioned following the pan by changing AutoPan to Distance from Centre of Screen. Set a value of 0% if you want the vehicle positioned exactly in the centre of the screen following the pan. Set 100% if you want the vehicle positioned right on the edge of the screen following the pan but be warned that in this case most of the vehicle is likely to not be visible following the AutoPan.

3. Tick AutoRotate following AutoPan if you want the drawing rotated at the same time as it is automatically panned. This does not affect behaviour if you manually invoke the pan command.

4. AutoRotate rotates the drawing so that either the spine of the tractor unit points directly up the screen. We find that this makes visualising the vehicles orientation easier when using the Manual Drive interface. However you can set AutoRotate to Bearing of to Steered Wheels if you find that more natural.

5. Tick AutoPan following AutoRotate if you also want to pan the drawing when AutoRotate is invoked.
System Settings: Skill Level

1. Click on the Skill Level tab.

2. Check the option appropriate to your knowledge and experience of AutoTrack. Novice users are presented with dialog boxes and prompts in addition to the command line prompt. Expert users only get command line prompts with no additional dialogs. Although you can select Intermediate skill level, it has no direct effect; it is normally selected automatically if, as a novice user, you disable one or more of the optional dialog boxes by ticking the Do not show this dialog again box.

3. To re-enable all optional dialog boxes disabled by an Intermediate user simply select the Novice skill level.

4. AutoTrack will remember the last location of all optional dialogs for the current CAD session. Click the Reset position of all optional dialogs button to reset the position all dialogs to the centre of the screen.
1. Click on the AutoDrive tab.

2. Tick Fast drag mode to only redraw the current point and one either side during dynamic editing. When the new point is confirmed the whole path is recalculated and redrawn. If this box is not checked the dynamic editing will be slower but more accurate.

3. Tick Show clearance envelope whilst driving to show a clearance zone outside the actual body envelope (if shown) and/or wheel envelope (if shown) while the vehicle is ghosted during driving. This allows accurate control if you have fixed clearance or safety guidelines. You may edit the clearance envelope offset distance in the adjacent box.

4. Tick Enable a side overturn to allow the vehicle to turn in the opposite direction prior to starting a bearing turn. Enter the maximum distance the vehicle should deviate sideways.

5. Tick Enable an exit overturn to allow the vehicle to turn past the normal exit point prior to turning back onto the required exit bearing. Enter the maximum distance that the vehicle should deviate from its normal path.

6. Tick Intermediate grips to show extra path editing grips between the known state changes. This allows you to insert further target points by simply picking one of these editing grips. These additional grips points are displayed differently from the target points. Intermediate grips are not available on the MicroStation version.

7. Select the required Maximum number of additional grips bearing in mind that too many can be confusing. Intermediate grips are not available on the MicroStation version.
8. Enter the **Minimum distance between intermediate grips** to prevent too many closely spaced grips. Intermediate grips are not available on the MicroStation version.

9. **Predictive Turning** mode draws path extents at the beginning of each section and envelope extents at the end of each section that help judge where to place target points. Note that the envelope extents for articulated vehicles represent not the absolute turning limits but the tightest turn possible without over-articulating. Thus it may be possible to turn tighter for a short distance.

10. Tick **Path extents at start of section** to show the left and right limits to path at the last target point placed. Select and enter up to two steering percentage values. Note that these are percentages of the lesser of the maximum non-articulating steering limits and the maximum steering angle.

11. Tick **Envelope extents at end of section** to show the left and right limits of the body envelope at the cursor. Select and enter up to two steering percentage values. Note that these are percentages of the lesser of the maximum non-articulating steering limits and the maximum steering angle.
1. Click on the **Manual Drive** tab.

![System Settings dialog: Manual Drive tab](image)

2. Click on the **Foreground Colour** box to select your preferred colour for the lines on the control overlay.

3. Click on the **Background Colour** box to select your preferred colour for the background colour of the control overlay.

4. Select your preferred **Control Position** from the drop down list. If you wish to specify a non-standard location select Custom and click the **Position and Size** button to define.

5. Click the **Position and Size** button to adjust the default appearance of the control overlay. The control overlay will appear and should be adjusted for location and size just like a normal resizable window. When you are happy with the appearance click the **Stop** button to return to the System Settings dialog.

6. Select your preferred **Steering Response** from the list. By default the control is weighted to be more responsive at smaller angles. This response is based upon a parabolic curve. You may select a linear response if you find that more natural.

7. Select your preferred **Speed Response** from the list. By default the control is weighted to be more responsive at slower speeds. This response is based upon a parabolic curve. You may select a linear response if you find that more natural.

8. By default the left button is the pick and drive button and the right button toggles hands off as might be used by a right handed person. Tick **Left Hand Drive** if you prefer it the other way round.

9. If you tick **Hold Button Down to Drive** the vehicle will only move while you are holding the mouse button down. If you
untick the box the vehicle will move as soon as the cursor moves outside the stop zone.

10. The **Auto Undo distance** is the length of path that is erased when you click the Auto Undo button on the control overlay. You may set it to any value but do bear in mind that auto undo is non-reversible and so we suggest that you do not set a very large value.

11. Tick **Show Outline Trails** to show a trail as you drive (a bit like a snail!).

12. Click on the **Vehicle Trail Colour** box to select your preferred colour for the trails left while driving.
System Settings: Follow Drive (not Light Rail version)

1. Click on the Follow Drive tab.

System Settings dialog: Follow Drive tab

2. The **Start Direction** is set by default to **Automatic** in which the direction of travel is based upon the orientation of the vehicle relative to the starting vertex of the polyline. Select **Forwards** or **Reverse** to if you want to force the direction of travel. Select **Keep Current** to continue in the current direction (e.g. if you often use Follow Drive after manoeuvres performed using a different drive mode).

3. Set the **Start Position** to **Automatic** to have the vehicle positioned at the end of the selected line closest to the point you picked with the steered wheels and all spines aligned tangentially to the line. If you want to adjust the vehicle orientation set Start Position to **Manual**. Start Position cannot be edited if the path is pre-selected, in these cases the current vehicle position and orientation is used.

4. By default Follow generates a non-editable path, i.e. you can move or rotate the entire path but not adjust the alignment. This gives best results in most cases. If you wish to create a path comprising a series of target points that can be dynamically edited then tick **Generate an Editable Path**.

Note
If you are checking fastest line then do NOT tick Generate editable path. (See also Using Follow to check fastest line).

5. If you opt for the editable path you can choose between two line following algorithms:-
 Select **Split line into lengths** if you want AutoTrack to follow the line as closely as it can. You must supply a **segment length**, the shorter the distance the closer the vehicle will follow the line. The default distance of 2.5m should be suitable for most situations. You gain little from setting too close a distance and the program will run slower. Try increasing the segment length if your vehicle cannot
negotiate a turn.
Select Track vertices only if you want AutoTrack to use the vertices as target points. Note that this option will follow the automatically generated vertices on splined polylines.

6. Tick Ignore vertices to allow AutoTrack to ignore closely spaced vertices. Lines can be difficult to follow if they contain many closely spaced points so we recommend that this option is used.

7. The vehicle will not always be able to reach target points on tight bends. Tick Follow line as closely as possible to allow the vehicle to wander from the line temporarily instead of stopping. The vehicle will then ignore target points that it cannot reach and focus on the next one. This has the effect of allowing the vehicle to drift out on tight bends.

8. Not all automatically inserted target points will always be necessary, i.e. no change of steering may be required. If you tick Optimise resulting path by removing unnecessary target points AutoTrack will remove targets points at which no steering changes are required.

Using Follow to check fastest line
If you want to check fastest line (e.g. through a roundabout) then you should set the design speed to the highest permitted and then create a non-editable path, i.e. do NOT tick Generate an editable path.

If AutoTrack cannot complete the path at the specified design speed then the speed will be reduced to the point at which it can. Note that if the design speed has to be reduced it will be for the entire length of the path. If you wish to check individual bends within the paths you should split the path into sections.
System Settings: Guided Drive (only Light Rail version) (2130)

1. Click on the Guided Drive tab.

2. The Start Direction is set by default to Forwards.
Drawing Settings

The AutoTrack Drawing Settings control those aspects of the system that are drawing related. The drawing settings are displayed all at once on a single tabbed dialog.

1. Select Drawing Settings from the AutoTrack drop down menu or click the Drawing Settings button on the AutoTrack toolbar or type ATRADRAWINGSETTINGS at the command line. The Drawing Settings dialog will appear.

 ![Drawing Settings dialog]

2. Click the appropriate tab to edit or view the settings.

3. Edit the data as required and click OK to confirm when you are satisfied. Click Cancel to abort all changes and close the Drawing Settings dialog.

4. Click Make Default to save the displayed settings as defaults for the next session. Click Reset to restore your last saved default settings following changes.
Drawing Settings: Units (2020)

1. Click on the **Units** tab.

2. You can use different units for vehicle editing and viewing and for reporting. Select the units that you wish to use for **Distance**, **Angles**, **Speed** and **Time**.
Drawing Settings: Scale (2030)

1. Click on the Scale tab.

2. AutoCAD
 Set the drawing units and scale by entering the number of distance units that 1 Drawing Unit represents followed by the units. If you set this incorrectly your vehicles will appear at the wrong size relative to other objects.

 MicroStation
 Set the drawing units and scale by entering the number of distance units that 1 Master Unit represents followed by the units. If you set this incorrectly your vehicles will appear at the wrong size relative to other objects.

3. Tick Auto check scale against drawing extents to have AutoTrack perform a crude scale check on existing drawings when the vehicle is positioned for the first path in a new drawing. This is a useful reminder if you have not set the drawing units and/or scale correctly.

4. Tick Prompt scale before use to have AutoTrack prompt you for a scale on new drawings. Note that this box is ticked by default for Novice users.

5. The middle frame labeled Angles contains values that are read from your CAD system settings and cannot be edited here. If you need to change these settings, do so through your CAD system.

6. Driving convention determines the position of a driver or pilot if defined and therefore vehicle tracking if the tracking point is set to pilot/driver. It also affects the direction of angled parking bays according to direction of traffic flow if you are using the parking tools.
Drawing Settings: Layers (AutoCAD only)

Note
MicroStation users should refer to the next sections, Drawing Settings: Levels (MicroStation v8 onwards) and Drawing Settings: Levels (MicroStation pre-v8 only).

1. Click on the **Layers** tab.

Drawing Settings dialog: Layers tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Use a layer naming convention | Savoy Basic (one layer for paths and all reports)
Savoy Standard (one layer for paths and one for each report)
Savoy Complex (one layer for paths and one for each report element)
AEC BS1192 Part 5 |
| Prompt before creating new layers | [] |

2. Tick **Use a layer naming convention** if you want AutoTrack to automatically place the entities that you create on separate logical named layers (strongly recommended).

3. If you opt not to use a layer naming convention all new paths will be placed on the current layer.

4. Select one of the **Savoy** conventions or the **AEC BS1192 Part 5** layer naming convention. See below for details of all the layer naming conventions.

5. Tick **Prompt before creating new layers** to have AutoTrack warn before new layers are created. In practice this means you will be prompted with a default layer name before you start each new path (see Base Layer Name dialog below) and given the opportunity to change it.

Note
Adoption of a layer naming convention does not prevent you from renaming a layer later.
Drawing Settings: Levels (MicroStation v8 onwards) (2067)

Note
MicroStation pre-v8 users should refer to the next section Drawing Settings: Levels (MicroStation pre-v8 only).

1. Click on the Levels tab.

2. Tick Use a level naming convention if you want AutoTrack to automatically place the entities that you create on separate logical named levels (strongly recommended).

3. If you opt not to use a level naming convention all new paths will be placed on the current level.

4. Select one of the Savoy conventions or the AEC BS1192 Part 5 level naming convention. See below for details of all the level naming conventions.

5. Tick Prompt before creating new levels to have AutoTrack warn before new levels are created. In practice this means you will be prompted with a default level name before you start each new path (see Base Level Name dialog below) and given the opportunity to change it.

Note
Adoption of a level naming convention does not prevent you from renaming a level later.
Drawing Settings: Levels (MicroStation pre-v8 only)

Note
Users of MicroStation v8 or later should refer to the previous section Drawing Settings: Levels (MicroStation v8 onwards).

1. Click on the Levels tab.

2. Select the level on which you want AutoTrack to place new paths.

Note
Setting the report level does not change the active level.
Layer / Level naming conventions

AutoTrack has four built in layer or level naming conventions.

Savoy Basic Layer/Level naming convention

Under the Savoy basic naming convention all path and report data is placed on a single layer or level named:

```
ATRxx
```

where:

```
x
```

is the path number

Note that this is also the base layer or level name for the other Savoy naming conventions.

The path and all report elements have explicitly defined colours and line types. Their colours and line types cannot therefore be changed by changing layer or level settings.

Parking bays are placed on layers named **Bays** and parking islands on a layer called **Islands**.

Savoy Standard Layer/Level naming convention

Under the Savoy standard naming convention the path data and construction lines are placed on layers or levels named:

```
ATRxx
```

and each report is placed on a layer or level named:

```
ATRxxRyy
```

where:

```
x
```

is the path number

```
yy
```

is the report number

The path and all report elements have explicitly defined colours and line types. Their colours and line types cannot therefore be changed by changing layer or level settings.

Parking data is placed on layers as per the basic convention except that construction lines are now separated and placed on a layer called **BayConstruction**.

Savoy Complex Layer/Level naming convention

Under the Savoy complex naming convention the layers or levels are named as follows:

```
ATRxxRyyrd
```

where:

```
x
```

is the path number

```
yy
```

is the report number (on this path)

```
r
```

is the report subject (Body, Chassis, Path, Symbols, Text)

```
d
```

is the direction of travel of the vehicle (Forward or Reverse).
Note
The direction is not used on reports that use a single layer or level.

The path and all report elements have explicitly defined colours and line types. Their colours and line types cannot therefore be changed by changing layer or level settings.

Each different type of parking data is placed on a different layer, e.g. privacy posts are placed on a layer called PrivacyPosts. In addition each type of construction line is placed on its own layer, e.g. flow direction arrows are placed on a layer called RowFlowDirection.

AEC BS1192 Part 5 Layer/Level naming Convention

Under the AEC naming convention the layers or levels are named as follows:-

\[V070PX$??GBATRxxRyyrd \]

where:-

- \(?? \) is the current elevation (00 if none found)
- \(xx \) is the path number
- \(yy \) is the report number (on this path)
- \(r \) is the report subject (Body, Chassis, Path, Symbols, Text)
- \(d \) is the direction of travel of the vehicle (Forward or Reverse).

Note
The direction is not used on reports which use a single layer or level.

The default discipline code (\(V \)) (which is not listed in the AEC disciplines) has been chosen because AutoTrack is used by professionals from a wide range of disciplines and this code allows the AutoTrack vehicle data to be isolated. Likewise the part code is normally discipline dependent so an unallocated code (070) has been selected for use here. Finally, pen colour or type is user dependent so code \(P \) is used here. All layer names can be edited if required.

The path and all report elements have explicitly defined colours and line types. Their colours and line types cannot therefore be changed by changing layer or level settings.

Parking data is placed on the same layers as the Savoy Complex convention.

Base layer or level name (Base Layer/Level Name dialog)

The base layer or level name is the part of the name to which is appended the sub-text appropriate to the selected naming convention. Thus if you use the Standard Savoy naming convention and change the default base layer/level name to BASENAME the layers or levels generated will be of the form...

\[BASENAMERyyrd \]

instead of...

\[ATRxxRyyrd \]
Drawing Settings: Tracking Point (not Light Rail version)

1. The path travelled by the vehicle is the line connecting the target points travelled by a specified tracking point on the vehicle. A tracking point on the first unit of the vehicle is used when the vehicle is travelling forwards and a point on the last unit when it is reversing. The tracking point is also the point that follows the line in the Follow drive mode.

2. Click on the Tracking Point tab.

3. Set the Forwards Tracking Point to the point you wish to track while the vehicle is moving forwards. Note that some of the options require you to select left or right using the adjacent drop down list box. With the exception of Pilot / Driver and User Defined Point the tracking point is assumed to be on the centre line of the unit. Note that front tracking points on a front steered vehicle tend to give better results that rear tracking points.

4. If you want to specify a point offset from the centre line then tick Offset to the left or Offset to the right as appropriate and enter the offset distance.

5. If you want to specify a particular point the set the Tracking Point to User Defined Point and enter the coordinates explicitly. X is measured from the front coupling or, if there is no front coupling, from the front axle, increasing positive towards the back of the unit; and Y is measured positive to the right of the centre line.

6. If you are modeling aircraft using Follow you should set this to Pilot / Driver or Cockpit if you want to simulate pilot's eye tracking.

7. The Reverse Tracking Point, the point that you want to track while the vehicle is moving backwards, is set in exactly the same way.
Drawing Settings: Model (not Light Rail version)

(2070)

1. The Model settings are used to limit the turning or articulation capability of the vehicle. This may be used to create a more conservative analysis.

2. Click on the Model tab.

3. **Nominal storage interval** is the frequency at which points on the path and reports are calculated and saved to the drawing. Reducing this value will make the program run slower because it is performing more calculations. Increasing this value will lose accuracy. This value may not be greater than 75% of the shortest wheelbase of any unit in the driven vehicle.

4. By default the program uses the steering and articulation limits defined in your vehicles. However, the settings on this tab allow you to temporarily change these limits.

5. You may limit the allowable steering lock in three mutually inclusive ways. The program will calculate new steering capabilities based upon the selected methods and use these new limits in all driving calculations unless they exceed the physical vehicle capabilities.

Select **Percentage of maximum** to change the steering capability of your selected vehicle as a factor of the actual maximum steering angle. Note that this is the only vehicle independent way to limit the steering angle.

Select **Absolute angle** to set a new maximum steering angle.

Select **Equivalent turning radius** to specify the maximum steering angle in terms of an equivalent radius. The radius may be to the inside of the inner wheels, the outside of the outer wheels, or the centreline of the steered axle.
6. You may limit the allowable articulation angles in two mutually inclusive ways. The program will calculate new articulation capabilities for all units based upon this figure and use these new limits in all driving calculations unless they exceed the physical vehicle capabilities.

Select **Percentage of maximum** to change the articulation limits of your selected vehicle as a factor of the actual maximum articulation angle. Note that this is the only vehicle independent way to limit articulation angles.

Select **Absolute angle** to set a new maximum articulation angle.

7. Overturns are when the vehicle turns sideways in the opposite direction prior to making a turn or when the vehicle continues forwards and turns late. Both are performed to minimize cut-in. The **Maximum overturn angle** is a way to limit the severity of the overturn by restricting the angle of deviation from a “normal” path.
1. Apart from design speed the Speed settings control the type of turn transition.

2. Click on the **Speed** tab.

3. You may specify different values for the **Forward design speed** and **Reverse design speed** since typically you would travel slower in reverse. Note that the vehicle movement will always be modeled at the design speed regardless of the rate at which you choose to animate the manoeuvre on screen.

 Warning
 If you are modelling turns at speeds greater than 15kph we strongly recommend that you limit the turn radius. Go to either the Model tab or the Dynamics tab.

4. By default the rate at which the steering can be turned is limited. This reflects the real life situation in which the vehicle is moving whilst steering lock is being applied. Tick **Limit forward turn rate** and/or **Limit reverse turn rate** to prevent instantaneous application of lock while travelling forwards or backwards respectively. Note that this setting can also be changed during driving if necessary.

 Note
 Disabling turn rates is equivalent to the use of the Turn on the Spot feature in version 2 of AutoTrack.

5. The steering turn rate can be limited in one of three ways. Either by defining the speed of the vehicle which is then used in conjunction with the vehicles lock to lock time or, by explicitly defining the lock to lock distance (i.e. the distance travelled in the lock to lock time), or by the pure geometric calculation of a circular arc.
Select **Based upon lock to lock time** to impose a turn rate that causes the turn radius to increase with speed. The turn rate (degrees per unit of distance) will be calculated as follows:

\[R = \frac{A}{V \, t} \]

Select **Based upon lock to lock distance** to impose a limit that is fixed for all speeds. The turn rate (degrees per unit of distance) will be calculated as follows:

\[R = \frac{A}{d} \]

Where:
- \(R \) is Max Turn Rate
- \(A \) is Max Steering Angle
- \(V \) is Design Speed
- \(t \) is Lock to Lock Time
- \(d \) is Lock to Lock Distance

Select **Based upon circular tangential arc** if you want the tracking point (typically the centre of the steered wheels) to follow a perfectly circular arc irrespective of speed or lock to lock time. Note that this is the model used by several organisations to generate design vehicle turn templates (e.g. AASHTO, TAC). This mode can only be used with tracking points that are in front of (relative to the direction of motion) the minimum cut-in point.
1. The Dynamics settings limit the turning radii for comfort at higher speeds. The automatically generated values are based upon published documents.

2. Click on the Dynamics tab.

3. If you want to limit the turning radius for super elevation and side friction tick the Limit Turning for Dynamic Effects box.

4. You may use automatically generated values from various references or set your own limiting values.

5. If you wish to use values from one of the available sources select from the Recommendations from and Design Context drop down lists. The units used for each design context are indicated with (M) or (US) in the context name representing metric and US customary units respectively.

Note
Speeds are displayed in the same units as the current design speed and radii are displayed in the same units as the drawing scale.

6. The recommended and calculated fields will change to reflect your selections. The distance data will be presented in drawing units and the speed in same units as your design speed.

7. If you do not want to use one of the recommended values you should clear the Use table value box and enter the required value in the edit box.

Note
The table values are taken straight from the appropriate reference table, which although based upon an equation, may be rounded. If you choose to use any of your own values AutoTrack will use the base equation to calculate the recommended limiting turn radius. This means that you may
get slightly different values if you manually enter a value that is the same as a recommended value.

8. The Side friction factor (f) is the ratio of the force parallel to the road surface and the reaction perpendicular to the road surface and the recommended values are all based upon comfort limits rather than physical skidding limits.

9. The Super elevation (e) is the slope of the road surface at right angles to the direction of vehicle travel. It is expressed as a factor so 2% super elevation should be entered as 0.02.

10. The table values are used for all speeds above a Min. applicable speed (V) which is the lowest speed listed in each table.

11. The recommended Minimum turn radius (R) that is displayed relates to the current forward design speed (which is shown on the same dialog). The values used will change as you vary the speed. They do not apply in reverse. AutoTrack will use the value listed in a table if the current forward design speed is within 0.5kph. If the design speed is outside this tolerance then the limiting radius will be calculated direct using the curve formulae relevant to the design publication and context.

The equation used for limiting values of e and f is:-

\[R = \frac{V^2}{127(e+f)} \]

Where:-

- \(R \) is Minimum Turn Radius
- \(V \) is Design Speed
- \(e \) is Maximum Super-elevation (expressed as m/m)
- \(f \) is Side Friction Factor

If the sum of super elevation and side friction factor is zero the minimum turn radius will not be calculated.

The radius relates either to the outermost wheel track, the innermost wheel track or the centre of the steered wheels. Select it from the drop down list box. The defaults for this field vary according to the selected table and are based upon advice from AASHTO representatives. If you select Radius is offset from outermost wheel track or Radius is offset from innermost wheel track then the calculated limiting wheel angle is based upon the path the vehicle must steer to keep the wheels just within the outer lane marking or just outside the inner lane marking respectively. In reality you will probably want to model the vehicle travelling some distance away from the lane marking to avoid collisions with vehicles in adjacent lanes or oncoming vehicles. Enter the clearance between the vehicle wheel envelope and the lane marking in the edit box provided.

AutoTrack will prevent a vehicle from using the limiting radius if it is lower than its design capabilities.
Drawing Settings: Reports \(^{(3000)}\)

1. The Reports dialog allows you to change the reports displayed.

2. Click on the Reports tab.

3. Each path may have one or more reports each comprising a defined set of sub-reports. In addition each path has a special construction lines report comprising various sub-reports. You may view the sub-reports by clicking on the + symbol.

4. The reports listed on this screen are applied by default to new paths but you may tick or untick the box adjacent to each title to enable or disable elements.

Tip

When you have completed your path it often clarifies the presentation if you switch off all construction lines by unticking the Construction Lines box in the Reports view.

5. In many cases it will only be necessary to define a single report here but you may wish to add more default reports. There must always be at least one report.

6. Click **Edit** to edit a sub-report. The appropriate Report Details dialog will appear.

7. Click **Copy** to make a copy of the current report. A new report will be added to the list and can be edited in the normal way. You cannot copy a sub-report.

8. Highlight a report and click **Rename** to give the report a new title. You cannot rename Construction Lines.

9. Click **New** to define a new report. A new report will be added to the list (with system default settings) which can be edited in the normal way. You cannot add a sub-report.

10. Click **Delete** to remove a report from the list.
Drawing Settings: Construction Lines (3160)

1. Construction Lines may prove useful whilst creating the path but would normally be disabled for the final report.

2. Click on the appropriate tab and tick the Show... box of those elements that you want.

 ![Construction Lines Settings](image)

Drawing Settings: Construction Lines

3. The following applies to all six types of construction lines. However, there are some options that apply only to particular types. These are listed at the end.

4. **Path** is the locus of the tracking point. **Errored Path** is a line connecting the target points of those sections of the path that cannot be performed. **Model Changes** are represented by an octagonal symbol and include speed changes and changes to the transition type. **Target Points** are shown as small crosses. **Drag Lines** are shown connecting the driving grip and the centres of the front and rear axles. **Steering Pointer** is a line or arrow projecting from the centre of the steered axle a distance equal to the wheelbase of the unit.

5. Select the **Colour** from the drop down list box. 255 pen colours are listed. To use a colour that is not listed select **Custom** and click on the colour swatch to select from a colour chart.

 AutoCAD only
 The pen numbers directly correlate with AutoCAD’s pen numbering system (colour indices in later versions). If you select a custom colour that does not correspond to a defined pen colour it will be treated as TrueColor.

6. Select the **Line Type** from the drop down list box.

7. Enter a line **Weight** for the report. 0.0mm is the default and forces the thinnest possible line. Wider lines are drawn symmetrically about the centreline. (Not available in AutoCAD R14).

 Note
 Variations in line weight are only visible on printed output or in a print preview.
Drawing Settings: Construction Lines: Path

1. Select **Show path line** to display the path of the tracking point.
2. Select **Show path identifier** to display the path number adjacent to each path.

Drawing Settings: Construction Lines: Drag Lines

1. Select **Show overturn draglines** to display editing draglines at overturns.
2. Select **Show extend path draglines** to display draglines extending from the front and rear of the vehicle. These may be used to extend the path by one section at a time.

Drawing Settings: Construction Lines: Steering Pointer

1. Select **Show steering percentage** to display the physical steering angle as a percentage of the maximum possible.
2. Select **Use simple steering pointer** to display the steering pointer as a line instead of as an arrow.
Drawing Settings: Reports: Discrete

1. This controls the appearance of the discrete outlines sub-report. It is applicable to various report types, including body, chassis, loads, etc. Each different report type may have different settings for its discrete sub-report.

2. Click on the **Discrete** tab.

 ![Body Outlines Report dialog: Discrete tab](image)

 (other discrete outline reports similar)

3. Tick **Show Discrete Outlines** to enable this element.

4. Tick the boxes to specify the features that you want.

 The option **At all Discrete Body Outlines** is available on all but the Body Outline sub-report.

 The option **Use simple body outline** is only available on the discrete and spaced body outline reports. It uses the outlines defined in the vehicle's Body Outline (Plan) outline type instead of those in Body Detail (Plan).

 The option to display **Label Text** is only available on the Annotation report. Leave the Label Text field blank to display the vehicle name; the text - **Vehicle Name** - will automatically appear in the edit box.

5. Tick **At Offsets** to show outlines at specified positions. Enter the distances from the start of the path in the adjacent box. You should use commas to separate distances, e.g. 10.4, 15.6, 23.9 would draw body outlines at distances of 10.4, 15.6, and 23.9 in the current units. Click the **Pick** button to select positions graphically.

 Tip

 You may find it easier to use the **Place Outline** command to position outlines at irregular offsets. (see Placing discrete body outlines)

6. Tick **Show driver / pilot** to display an icon representing the driver’s location. Note that the position of the driver can be adjusted in the vehicle details.
7. If you are using a layering convention then you will not be allowed to specify the report Layer (Level on MicroStation). Otherwise, you may select from the existing layers or specify a new layer for the report.

8. Select the Line Type from the drop down list.

9. Select the Colour from the drop down list box. 255 pen colours are listed. To use a colour that is not listed select Custom and click on the colour swatch to select from a colour chart.

AutoCAD only
The pen numbers directly correlate with AutoCAD's pen numbering system (colour indices in later versions). If you select a custom colour that does not correspond to a defined pen colour it will be treated as TrueColor.

10. Enter a line Weight for the report. 0.0mm is the default and forces the thinnest possible line. Wider lines are drawn symmetrically about the centreline. (Not available in AutoCAD R14).

Note
Variations in line weight are only visible on printed output or in a print preview.
Drawing Settings: Reports: Spaced

1. This controls the appearance of the spaced outlines sub-report. It is applicable to various report types, including body, chassis, loads, etc. Each different report type may have different settings for its spaced sub-report.

2. Click on the Spaced tab.

3. Tick Show Evenly Spaced Outlines to enable this element.

4. Tick the boxes to specify the features that you want.

The option Use simple body outline is available on only the discrete and spaced body outline reports. It uses the outlines defined in the vehicle's Body Outline (Plan) outline type instead of those in Body Detail (Plan).

The option to display Label Text is available only on the Annotation report. Leave the Label Text field blank to display the vehicle name; the text - Path Number - will automatically appear in the edit box.

5. Enter the required Nominal Spacing for the outlines. This will place outlines at the closest stored position after the specified distance.

6. If you want the spacing to be precise instead of approximate tick Insert outlines at exact spacing. However, note that since the vehicle orientation must be interpolated, it may be very slightly inaccurate. Therefore, for best accuracy, we recommend that you use nominal spacing.

7. Tick Show driver / pilot to display an icon representing the driver's location. Note that the position of the driver can be adjusted in the vehicle details.

8. If you are using a layering convention then you will not be allowed to specify the report Layer (Level on MicroStation). Otherwise, you may select from the existing layers or specify a new layer for the report.
9. Select the **Line Type** from the drop down list.

10. Select the **Colour** from the drop down list box. 255 pen colours are listed. To use a colour that is not listed select **Custom** and click on the colour swatch to select from a colour chart.

AutoCAD only

The pen numbers directly correlate with AutoCAD’s pen numbering system (colour indices in later versions). If you select a custom colour that does not correspond to a defined pen colour it will be treated as TrueColor.

11. Enter a line **Weight** for the report. 0.0mm is the default and forces the thinnest possible line. Wider lines are drawn symmetrically about the centreline. (Not available in AutoCAD R14).

Note

Variations in line weight are only visible on printed output or in a print preview.
Drawing Settings: Reports: Loci

1. This controls the appearance of the loci sub-report. It is applicable to various report types, including body, chassis, loads, etc. Each different report type may have different settings for its loci sub-report.

2. Click on the **Loci** tab.

3. Tick **Show Loci / Tracks** to enable this element.

4. The Body outline report has an option **Only loci critical points**. Tick this option to trace only the front offside corners of the body and the cut-in points on each side.

5. The Chassis report has an option **Show outermost tyre tracks**. Tick this option to show the path of the inside face of the outermost tyres, i.e. if the vehicle has twin wheels then only the outer one is tracked.

6. If you are using a layering convention then you will not be allowed to specify the report **Layer** (**Level** on MicroStation). Otherwise, you may select from the existing layers or specify a new layer for the report.

7. Select the **Line Type** from the drop down list.

8. Select the **Colour** from the drop down list box. 255 pen colours are listed. To use a colour that is not listed select **Custom** and click on the colour swatch to select from a colour chart.

 AutoCAD only
 The pen numbers directly correlate with AutoCAD’s pen numbering system (colour indices on later versions). If you select a custom colour that does not correspond to a defined pen colour it will be treated as TrueColor.

9. Enter a line **Weight** for the report. 0.0mm is the default and forces the thinnest possible line. Wider lines are drawn symmetrically about the centreline. (Not available in AutoCAD R14).
Note
Variations in line weight are only visible on printed output or in a print preview.
Drawing Settings: Reports: Envelope

1. This controls the appearance of the envelope sub-report. It is applicable to various report types, including body, chassis, loads, etc. Each different report type may have different settings for its envelope sub-report.

2. Click on the Envelope tab.

3. Tick Show Envelope to display an envelope of the movement of the vehicle.

4. Tick Close Envelope to join the left and right boundaries at the front and the back.

5. Tick Hatch Envelope to fill the envelope with hatch lines of the same type as the envelope itself.

6. Hatch spacing defaults to a value appropriate to the size of the vehicle, i.e. large vehicles such as aircraft will have a wider spacing than smaller vehicles such as cars.

7. The colour of the hatching is always a proportion of the envelope colour. By default, if the envelope colour is bright green the hatch colour will be dark green. The Hatch Colour Factor may be set to change this. A value of 100 represents 100% of the envelope colour, i.e. the same colour as the envelope.

8. Set the Hatch Angle to adjust the appearance of the hatching and allow overlain hatched areas to be visible.

9. If you are using a layering convention then you will not be allowed to specify the report Layer (Level on MicroStation). Otherwise, you may select from the existing layers or specify a new layer for the report.

10. Select the Line Type from the drop down list.

11. Select the Colour from the drop down list box. 255 pen colours are listed. To use a colour that is not listed select Custom and click on the colour swatch to select from a colour chart.
AutoCAD only
The pen numbers directly correlate with AutoCAD’s pen numbering system (colour indices on later versions). If you select a custom colour that does not correspond to a defined pen colour it will be treated as TrueColor.

12. Enter a line Weight for the report. 0.0mm is the default and forces the thinnest possible line. Wider lines are drawn symmetrically about the centreline. (Not available in AutoCAD R14).

Note
Variations in line weight are only visible on printed output or in a print preview.
Drawing Settings: Reports: Offset Envelope 1

Note
Offset Envelope 2 is similar.

1. These control the appearance of each of the offset envelope sub-reports. They are applicable to various report types, including body, chassis, loads, etc. Each different report type may have different settings for its offset envelope sub-report.

2. Click on the Offset Envelope 1 tab.

3. Tick Show Body Offset Envelope 1 to add a clearance or safety envelope around the static envelope.

4. Enter a value for Offset from actual envelope. Note the default values are arbitrary.

5. Tick Close Envelope to join the left and right boundaries at the front and the back.

6. Tick Hatch Envelope to fill the envelope with hatch lines of the same type as the envelope itself.

7. Hatch spacing defaults to a value appropriate to the size of the vehicle, i.e. large vehicles such as aircraft will have a wider spacing than smaller vehicles such as cars.

8. The colour of the hatching is always a proportion of the envelope colour. For example, if the envelope colour is bright green the hatch colour will be dark green. The Hatch Colour Factor may be set to change this. A value of 100 represents 100% of the envelope colour, i.e the same colour as the envelope.

9. Set the Hatch Angle to adjust the appearance of the hatching and allow overlain hatched areas to be visible.

10. If you are using a layering convention then you will not be allowed to specify the report Layer (Level on MicroStation). Otherwise, you may select from the existing layers or specify a new layer for the report.

11. Select the Line Type from the drop down list.

12. Select the Colour from the drop down list box. 255 pen colours are listed. To use a colour that is not listed select Custom and click on the colour swatch to select from a colour chart.

AutoCAD only
The pen numbers directly correlate with AutoCAD’s pen numbering system (colour indices on later versions). If you select a custom colour that does not correspond to a defined pen colour it will be treated as TrueColor.

13. Enter a line Weight for the report. 0.0mm is the default and forces the thinnest possible line. Wider lines are drawn symmetrically about the centreline. (Not available in AutoCAD R14).

Note
Variations in line weight are only visible on printed output or in a print preview.
Drawing Settings: Reports: Profile

1. The Profile report settings control the appearance of the side elevation or profile report.

2. Click on the Profile tab.

3. The position of the diagram can be set either relative to the start of the path or explicitly. Tick Offsets from start of path for the former and leave it unticked to fix the position explicitly. To select the location interactively click the Pick button, position the report and left click to confirm.

4. If you would rather see a plan view of the vehicle, instead of an elevation, then tick Show plan view of vehicle.

5. Tick the Show dimensions and vehicle details if you want an annotated diagram. Set the Dimensions font height in real world units, i.e. drawing units. If you only want dimensions then set the Vehicle details font height to zero. Likewise if you only want vehicle details.

6. If you are using a layering convention then you will not be allowed to specify the report Layer (Level on MicroStation). Otherwise, you may select from the existing layers or specify a new layer for the report.

7. Select the Line Type from the drop down list.

8. Select the Colour from the drop down list box. 255 pen colours are listed. To use a colour that is not listed select Custom and click on the colour swatch to select from a colour chart.

AutoCAD only

The pen numbers directly correlate with AutoCAD’s pen numbering system (colour indices in later versions). If you select a custom colour that does not correspond to a defined pen colour it will be treated as TrueColor.

9. Enter a line Weight for the report. 0.0mm is the default and forces the thinnest possible line. Wider lines are drawn symmetrically about the centreline. (Not available in AutoCAD R14).
Note
Variations in line weight are only visible on printed output or in a print preview.
Drawing Settings: Reports: Graph

1. This controls the appearance of the steering and articulation angles graph.

2. Click on the Graph tab.

Steering/Articulation Graph Report dialog

3. The position of the diagram can be set either relative to the start of the path or explicitly. Tick Offset from start of path for the former and leave it unticked to fix the position explicitly. To select the location interactively click the Pick button, position the report and left click to confirm.

4. The height and width can be set explicitly or to be scaled with the rest of the drawing. Select Height / Width to set explicitly or Y-Scale / X-Scale to allow the graph to scale. In each case you will need to enter suitable values for height and width.

5. Enter Text height (Min and Max). Tick Scale font size if you want the text to scale with the rest of the drawing.

6. Tick Show grid lines to display a regular background grid. Adjust the spacing in each direction if necessary. Click on the button to change the line attributes.

7. Tick Show axes to draw graph axes in a different colour. Tick Show origin to draw a circle at the graph origin. Click on the button to change the line attributes.

8. Tick Show bounding box to enclose the graph in a box. Tick Show leader line to draw a line connecting the bounding box to the path. Note that the position of the connecting line is automatic and cannot be manually controlled. Click on the button to change the line attributes.

9. Tick Show steering to plot a graph of the steering angle. Tick Show max steering to draw a line representing the maximum steering angle. Click on the button to change the line attributes.
10. Tick **Show articulation** to plot a graph of the articulation angle(s). Tick **Show max articulation** to draw a line(s) representing the maximum articulation angle(s). Click on the button to change the line attributes.

11. Tick **Show section lines** to draw vertical lines on the graph at every model change (i.e. change of speed, steering limit, etc). Tick **Show speed** to indicate the speed and direction along the bottom of the graph. Click on the button to change the line attributes.

12. Tick **Show discrete body positions** to draw vertical lines wherever a discrete body outline has been placed on the path. Tick **Show leader line** to draw lines connecting the path to the graph at each discretely placed body outline. Click on the button to change the line attributes.

13. Tick **Label peaks** to annotate the graph to showing the angle at every maximum in each direction. Tick **Show % of max angles** to also show this angle expressed as a percentage of the maximum. Click on the button to change the line attributes.
Drawing Settings: Animations (not AutoCAD Lite)

1. The Animations settings control the appearance of animations. 2D animation is available in the full version on all CAD systems but 3D animation is currently only available in AutoCAD hosts and so the first two sections Set 3D viewpoint automatically and 3D Appearance are only enabled in these versions.

2. Click on the Animations tab.

3. By default AutoTrack automatically sets the 3D viewing angle. If you would prefer to set the viewing angle manually then untick Set 3D viewpoint automatically.

4. The viewing angle is set by default to 30 degrees. If you would prefer a different viewing angle then select an angle from the drop down list or enter an alternative.

5. If you want AutoTrack to only set the viewing angle when you have no view set then tick Only create viewpoint when none set.

6. If you want AutoTrack to switch out of 3D mode when you close the animation dialog tick Revert to 2D view on closing Animation dialog.

7. Tick Perspective mode in the 3D Appearance section if you want to display a more realistic 3D view. This is especially so when you have a drivers eye viewpoint set.

 Note
 Perspective mode is not available in AutoCAD R14.

8. The 3D vehicle shape can be displayed in one of several formats. Select your preferred option from the Image style drop down list box.

9. Tick Hide all layers during animation to hide the 2D swept path while a 3D animation is playing.
10. Tick **Enable acceleration & deceleration** if you want vehicles to slow down and speed up realistically at pauses and changes in design speed.

11. Tick **At start of path, At end of path and / or At pauses** to control where this feature is applied.

12. Select the required **Acceleration** and **Deceleration** from the drop down combo box or enter your own values.
Driving

There are six drive modes in the full version of AutoTrack; AutoDrive Arc, AutoDrive Bearing, Manual Drive, Follow, Script and Vertical Clearance. Each may be accessed either directly from the toolbar or the drop down menu. A further drive mode allows you to insert parked vehicles.

AutoTrack Lite has Manual Drive, Follow and Script but does not have AutoDrive Arc, AutoDrive Bearing, Vertical Clearance or Dynamic Editing. It does however have the Park mode.

AutoTrack for Light Rail Design has only one drive mode, namely Guided Drive.
AutoDrive (not Lite or Light Rail versions)

AutoDrive operates in two modes, Arc and Bearing. Both are controlled via a floating dialog which allows the user to adjust various parameters.

In Arc mode AutoTrack calculates a path, consisting of circular arcs, through target points specified by the user. In doing so it automatically generates any transitions necessary between segments.

In Bearing mode AutoTrack turns the vehicle as quickly as possible subject to the allowable lock rate until the steered wheels are on a bearing through the target point and then continues on that bearing until the selected path point reaches the target.

To use AutoDrive in Arc mode

1. Select **AutoDrive Arc** from the AutoTrack drop down menu or click the **AutoDrive Arc** button on the AutoTrack toolbar.

2. If you have a default vehicle set up then AutoDrive will use this vehicle and you should go to step 6. If you want to use a different vehicle then right click now and refer to Changing your vehicle. Otherwise…

3. If you have a path pre-selected then AutoDrive will use the current vehicle and position and you should go to step 7. Otherwise…

4. The Library Explorer will appear for you to select a vehicle.

 ![Library Explorer dialog](image)

 Library Explorer dialog

 5. Select a vehicle and click **Proceed**. For help on how to select a vehicle refer to Selecting a vehicle to drive later in this section.

 6. Your chosen vehicle will be displayed and can be positioned using the mouse. Position and orient your vehicle and click **Proceed**. For help on how to position a vehicle refer to
Positioning a vehicle interactively later in this section.

Note
If you have a simple body defined (i.e. of report type Body Outline (Plan)) AutoTrack will use this, otherwise it will use the detailed plan of type Body Detail (Plan).

7. Drive the vehicle (see below) and right click when finished.

To drive forwards on an arc

1. Move the cursor in front of the vehicle and pause. A ghosted image will show the path the vehicle will travel from the last position through the target point (the cursor).

2. If you cannot see a vehicle you may have your drawing units set incorrectly.

3. A straight red line connecting the cursor to the last position indicates that you are requesting a manoeuvre that cannot be performed and the error will be displayed in the bottom left corner of the AutoCAD status bar. Try moving the cursor to perform a less severe turn.

4. Move the cursor until the vehicle is in the desired position and left click to confirm. A vehicle outline will be drawn at the selected location and you may now repeat the process for the next position.

5. The AutoDrive options dialog allows you to specify a minimum radius and to change settings for the current turn. See below.

6. To turn tight and then travel straight tick Drive onto bearing.

To drive backwards on an arc

1. Move the cursor behind the vehicle and pause. A ghosted image will show the path the vehicle will travel from the last position through the target point (the cursor).

2. A straight red line connecting the cursor to the last position indicates that you are requesting a manoeuvre that cannot be performed and the error will be displayed in the bottom left corner of the AutoCAD status bar. Try moving the cursor to perform a less severe turn.

3. Move the cursor until the vehicle is in the desired position and left click to confirm. A vehicle outline will be drawn at the selected location and you may now repeat the process for the next position.

To use AutoDrive in Bearing mode

1. Select AutoDrive Bearing from the AutoTrack drop down menu or click the AutoDrive Bearing button on the AutoTrack toolbar. The default turn angle is 90 degrees. Note that on AutoCAD platforms only AutoDrive Bearing has a flyout toolbar listing standard turn angles of 30, 45, 60, 90, 120, 135, 150 and 180 degrees.

2. If you have a default vehicle set up then AutoDrive will use this vehicle and you should go to step 6. If you want to use a different vehicle then right click now and refer to Changing
your vehicle.
Otherwise…

3. If you have a path pre-selected then AutoDrive will use the current vehicle and position and you should go to step 7. Otherwise…

4. The Library Explorer will appear for you to select a vehicle.

![Library Explorer dialog]

5. Select a vehicle and click **Proceed**. For help on how to select a vehicle refer to Selecting a vehicle to drive later in this section.

6. Your chosen vehicle will be displayed and can be positioned using the mouse. Also displayed will be the AutoDrive Bearing options dialog. Position and orient your vehicle and click **Proceed**. For help on how to position a vehicle refer to Positioning a vehicle interactively later in this section.

7. Move the cursor in front of the vehicle and pause. A ghosted image will show the path the vehicle will travel from the last position through the target point (the cursor). Notice how the path is different from AutoDrive Arc.

8. Move the cursor until the vehicle is in the desired position and left click to confirm. A vehicle outline will be drawn at the selected location and you may now repeat the process for the next position.

9. You can delete the last selected position (target point) by simply left clicking with the cursor inside the wheelbase of the last drawn vehicle outline. This can be repeated back to the start of the path.

10. The AutoDrive options dialog allows you to specify turn angle and or radius and to change settings for the current turn. See below.

11. To drive arcs instead of straight segments untick **Drive onto bearing** in the AutoDrive options dialog.
AutoDrive options (5110)

1. The AutoDrive dialog appears when you use either of the AutoDrive modes. It allows you not only to set turning criteria but also to switch between arc and bearing mode.

 ![AutoDrive options dialog](image)

2. To switch to bearing mode tick Turn onto bearing and to switch back untick it.

3. To limit the turning radius tick Minimum radius, enter a value in the box and press <Tab> or <Enter>. You can select Inner Wheel or Outer Wheel to limit the inside or outside wheel tracking radius respectively, Inner Body or Outer Body to limit the inner or outer body envelope radius or Centreline to limit the radius at the centre of the steered axle.

 Note
 Vehicle turning limitations still take precedence over the value in this field.

4. To show a clearance zone around the vehicle tick Clearance Offset. You may edit the offset value. The clearance envelope applies to both body and chassis, i.e. an offset envelope will be displayed outside the body static envelope and another outside the chassis static envelope. If you want to use a clearance envelope during driving then you should refer to Settings, AutoDrive.

5. Tick / untick Turn onto bearing to switch between bearing and arc modes.

6. Select Freehand turn (the default) to turn immediately and drive straight to the cursor. In this case the vehicle still turns as tightly as current constraints allow but there is never any straight section preceding the turn.

7. Select Picked alignment to specify the alignment by picking a line or line segment from the drawing. You can align the vehicle parallel to the selected line or depress the Perpendicular To button to align the vehicle perpendicular to the selected line. Click the Pick alignment button to pick the alignment.

8. Select Turn through angle to turn as late as possible through a fixed angle. Select the angle from the drop down list or enter a value. The vehicle will turn as tightly as possible, subject to current constraints, through the specified angle and then drive straight to the cursor. As you move the
cursor away from the last target point the sections preceding and following the turn adjust accordingly.

9. After the next target point has been picked following selection of a non-freehand bearing mode the bearing mode will switch automatically back to freehand mode.

10. Select **Turn onto WCB** (whole circle bearing) to turn as late as possible onto a fixed heading. Select the heading from the drop down list or enter a value. Again, the vehicle will turn as tightly as present constraints allow onto the specified heading and then straighten and drive to the cursor.

11. The current angle and bearing are displayed in the adjacent read-only boxes.

12. Select **Side overturn** to start the turn with opposite lock thereby reducing trailing axle cut-in. By adjusting the side overturn distance you can alter the size of the deviation.

13. Select **Exit overturn** to continue the turn beyond the required exit angle prior to turning back onto the required exit angle. As with side overturn this reduces trailing axle cut-in.

14. Adjust the **Max overturn angle** to alter the severity of the overturn. This is the maximum opposite lock bearing deviation. For example, if the vehicle commences a right turn from straight ahead on a bearing of 0 deg, a max overturn angle of 30 deg would allow the vehicle to turn left onto a maximum bearing of -30 before turning back. Note that the maximum overturn angle may not be reached when using smaller overturn distances.

15. To check what other constraints are current click **More>>>.**

Forwards and Reverse Predictive Turning buttons

AutoDrive options dialog (expanded)
16. Depress the **Forward Predictive Turning** button to switch on the Predictive Turning envelope for forward manoeuvres or the **Reverse Predictive Turning** button for the same in reverse. You can change the settings for these in the AutoDrive settings. Note that for articulated vehicles the predictive turning envelopes are based upon a percentage (set in AutoDrive settings) of the tightest turn possible without the vehicle over-articulating. Thus it may be possible to turn tighter than the 100% envelope for a short distance.

17. To limit the steering tick **Limit steering to percentage** or **Limit steering to angle** and edit the value if required. Note that limiting the steering by percentage is vehicle independent whereas limiting to a specific angle is not.

18. To limit the articulation angles tick **Limit articulation to percentage** or **Limit articulation to angle** and edit the value if required. Note that limiting the articulation angles by percentage is vehicle independent whereas limiting by angle is not.

19. To allow steering to be turned whilst the vehicle is stationary untick **Limit forward turn rate** or **Limit reverse turn rate**. When these limits are disabled (unticked) you should be able to see the steering pointer (if displayed) at the last picked position changing as you move the cursor to change the current position.

20. If you are modeling higher speed manoeuvres (above about 15kph) then you may wish to tick **Dynamic effects**. This limits the turn radius to allow for passenger comfort. See Drawing Settings: Dynamics (not Light Rail version) for more details.

21. Tick **Offset forwards TP** (Tracking Point) or **Offset reverse TP** to offset the tracking point.

22. If you need to modify a value that is not listed click the **Current Model** button.
Manual Drive (not Light Rail version)

Manual Drive allows you to control the vehicle interactively much like the real vehicle, albeit with a different viewpoint and controls.

To use Manual Drive

1. Select Manual Drive from the AutoTrack drop down menu or click the Manual Drive button on the AutoTrack toolbar.

2. If you have a default vehicle set up then Manual Drive will use this vehicle and you should go to step 6. If you want to use a different vehicle then right click now and refer to Changing your vehicle. Otherwise…

3. If you have a path pre-selected then Manual Drive will use the current vehicle and position and you should go to step 7. Otherwise…

4. The Library Explorer will appear for you to select a vehicle.

5. Select a vehicle and click Proceed. For help on how to select a vehicle refer to Selecting a vehicle to drive later in this section.

6. Position and orient your vehicle and click Proceed. For help on how to position a vehicle refer to Positioning a vehicle interactively later in this section.

7. The Control Overlay will appear.
8. By default the overlay will appear in the bottom right corner of the screen. If you find this awkward the location and size of the overlay can be changed in Manual Drive Settings.

To start driving (Control Overlay) (6020)

If you are using the default button functionality….

1. Click the Go button. The buttons will disappear and the cursor now represents requested steering angle and rate at which the path is generated (not design speed).

2. The vehicle will start to move when you move the cursor out of the stop zone. Notice how the caption bar changes from Driving: PAUSED to Driving: Forwards or Driving: Reverse to reflect the direction of travel. Click the left button again when you wish to pause.

3. Move the cursor between the two centre horizontal bands to stop moving, above the bands to go progressively faster forwards and below the bands to go progressively faster in reverse.

4. Move the cursor left to turn the steered wheels left and vice versa. Practice reversing and driving rear steered vehicles until you feel comfortable with the steering response.

5. A dotted line representing the current wheel angle is displayed on the overlay. If you have steering rate limits enabled you may notice that it lags behind the requested steering angle represented by the cursor. The degree to which it lags behind depends upon the steering rate criteria. The actual wheel angle line will snap the centre of the full lock and straight ahead zones.

6. Click anywhere on the overlay to pause the vehicle and redisplay the buttons.
If you have specified hold down button to drive…

1. Move the cursor into the zone above or below the buttons and hold down the left mouse button. The buttons will disappear and the cursor now represents requested steering angle and rate at which the path is generated (not design speed).

2. As long as you hold the button down the overlay buttons will not be visible and the vehicle will start to move as you move the cursor out of the stop zone. Notice how the caption bar changes from Driving: PAUSED to Driving: Forwards or Driving: Reverse to reflect the direction of travel. As soon as you release the left mouse button the vehicle will stop moving and the overlay buttons will reappear.

3. Move the cursor between the two centre horizontal bands to stop moving, above the bands to go progressively faster forwards and below the bands to go progressively faster in reverse.

4. Move the cursor left to turn the steered wheels left and vice versa. Practice reversing and driving rear steered vehicles until you feel comfortable with the steering response.

5. A dotted line representing the current wheel angle is displayed on the overlay. If you have steering rate limits enabled you may notice that it lags behind the requested steering angle represented by the cursor. The degree to which it lags behind depends upon the steering rate criteria. The actual wheel angle line will snap the centre of the full lock and straight ahead zones.

6. Release the mouse button to pause the vehicle and redisplay the buttons.

Note
If you have configured your mouse for left-handed use or selected left hand drive in the Manual Drive settings then you will need to hold down the right mouse button to drive.

To pause driving

If you are using the default button functionality…

1. Right click. The overlay buttons will appear.

If you have specified hold down button to drive…

1. Release the left mouse button. The overlay buttons will appear.

Note
If you have swapped the mouse button functionality, either in the Windows Control Panel or in the Manual Drive settings then you will need to click (or release) the right mouse button.

To adjust the view

1. For your convenience the View toolbar functions are repeated on this dialog. For help in adjusting the view refer to Adjusting the view.
To undo part of the path

1. If the overlay buttons are not displayed pause driving to display them.
2. Click the Auto Undo button.
3. The path will be shortened by the Auto Undo distance. The Auto Undo distance is 2.5m by default but can be modified if a different value is more appropriate. For details of how to modify the Auto Undo distance refer to System Settings: Manual Drive (not Light Rail version).

To redraw the path and update the reports

1. If the overlay buttons are not displayed pause driving to display them.
2. Click the Redraw button.
3. The path and all reports will be redrawn.

To show or hide the vehicle trail

1. If the overlay buttons are not displayed pause driving to display them.
2. Click the Show Trails button to toggle displaying and hiding vehicle trails as you drive. If the button is depressed trails will be displayed.

To edit the path properties

1. If the overlay buttons are not displayed pause driving to display them.
2. Click the Properties button.
3. The Path Properties dialog will appear. Edit the properties and click OK to confirm and resume driving.

To edit the path reports

1. If the overlay buttons are not displayed pause driving to display them.
2. Click the Reports button.
3. The path properties dialog will appear with the Reports tab foremost. Edit the reports and click OK to confirm and resume driving.

To terminate the current path

1. If the overlay buttons are not displayed pause driving to display them.
2. Click the Stop button.
3. The control overlay will disappear.
Follow (not Light Rail version)

Follow allows you to track a vehicle along a predefined polyline or spline and is useful if the path that your vehicle will take is well defined, e.g. aircraft manoeuvring on airport taxiways. It can be used in conjunction with the other drive modes.

To use Follow

1. Select Follow from the AutoTrack drop down menu or click the Follow button on the AutoTrack toolbar.

2. If you have a default vehicle set up then Follow will use this vehicle and you should go to step 6. If you want to use a different vehicle then right click now and refer to Changing your vehicle. Otherwise…

3. If you have a path pre-selected then Follow will use the current vehicle and position and you should go to step 6. Otherwise…

4. The Library Explorer will appear for you to select a vehicle.

5. Select a vehicle and click Proceed. For help on how to select a vehicle refer to Selecting a vehicle to drive later in this section.

6. Pick an AutoCAD polyline (which may be 2D, 3D, splined, curve-fitted or contain straight and/or arc segments) or spline (2D, non-closed, non-periodic splines only) or MicroStation complex chain. The vehicle will follow the line starting at the end closest to the point picked. Closing segments of closed polylines are ignored.

7. The Follow Settings dialog will appear.
Follow Drive Settings dialog

8. Make sure that the **Start Direction** is set to the correct direction. Select Forwards or Reverse to force the direction of travel. Select Keep Current to continue in the current direction (if this manoeuvre follows one performed using a different drive mode). Select Automatic to determine the direction of travel based upon the orientation of the vehicle relative to the starting vertex of the polyline.

9. If you have a path pre-selected then the current vehicle position and orientation will be used and you should go to step 10. Otherwise, you will probably want **Start Position** set to Automatic, which will start the vehicle at the end of the line closest to the point you picked, with the steered wheels tangential to the line and all the spines aligned. If you want to adjust the position of the vehicle then select Manual.

10. If you are modelling aircraft then you should click on the Tracking Point tab and check that the Tracking Point’s are set correctly, i.e. typically, Pilot’s Eye or Front most Axle.

11. Change any other settings if necessary (see System Settings: Follow Drive (not Light Rail version)) and then click **OK**.

12. The swept path will be generated and the path redrawn.
Script (not Light Rail version)

The Script language allows you to specify paths as a series of very well defined and manoeuvres. This means that you can generate “templates” of commonly used manoeuvres. It works with or without a pre-selected vehicle or path.

To create or edit an AutoTrack script

1. Select Script from the AutoTrack drop down menu or click the Script button on the AutoTrack toolbar.
2. The Script Editor will appear. If you have already edited a script then this will appear in Command Script window.

3. Type your manoeuvre commands in the edit box. Each line that you type will be added to the Command Script window.

4. To remove a line, highlight it in the Command Script window and click Remove. The line will be removed.

 Tip
 You can select multiple lines for deletion by dragging and/or using Ctrl-Click.

5. To insert a command, highlight the position in the Command Script window and click Insert. A blank line will be inserted.

6. To copy a line to the end of the script, highlight it in the Command Script box and click Copy.

 Tip
 Select multiple lines for copying by dragging and/or using Ctrl-Click.

7. To clear the current command script click New.

8. You may print a hardcopy of a script by clicking the Print button.

9. A full list of script commands appears at the end of this section.
To run an AutoTrack script
1. Create or load the required script.
2. Make sure that you have no path selected and then click the Run Script button.
3. The manoeuvre(s) will be generated on layers defined by the current layering convention settings. However, unlike other drive modes the script command will not prompt for a layer name if this option is enabled.
4. If the manoeuvre is incomplete then check the command line, it was probably impossible.

To save an AutoTrack script
1. Click the Save button. The Save As dialog will appear.
2. Browse to the directory in which you wish to save the script and then click Save.

To load an AutoTrack script
1. Click the Load button.
2. Browse to find the file that you wish to load and then click Load.

AutoTrack script commands
There follows a list of script commands for reference purposes.

Script Commands: General
1. \text{;text}
 Comment line (ignored)
2. \text{Etext}
 Echo text to the command line when the script is run
3. \text{Utext}
 Set the distance units for the rest of the script to text, where text is a valid units abbreviation (e.g. 'ft', 'm', 'mm' etc.). The default units are metres.

Script Commands: New Path
4. \text{AutoTrack} will automatically prompt for a vehicle, i.e. issue a \text{V?} command, if none is given in the script. A \text{V?} command in a script is ignored if a vehicle or path has been pre-selected.
5. \text{N}
 Start a new path, using the currently selected vehicle (the start settings of the new path match the old path)
6. \text{V?}
 Select the vehicle interactively (prompts for a vehicle using the Library Explorer)
Script Commands: Positional

The following positional commands are ignored if a drive command has been issued or if a path has been pre-selected. AutoTrack will automatically prompt for position, i.e. issue a `P?` command, if none is given in the script.

- **P?**
 - Set the position interactively
 - (if this command is placed at the end of the script you will be able to position the scripted manoeuvre)

- **Px,y**
 - Set the start position of the path to \(x, y\) in the current UCS

- **H?**
 - Set the heading interactively

- **Hb**
 - Set the heading to \(b\) degrees in the current UCS

- **S?**
 - Set the wheel angle interactively

- **Sa**
 - \(S+a\)
 - Set the steering right at angle \(a\)

- **Sra**
 - Set the steering right at angle \(a\)

- **S–a**
 - Set the steering left at angle \(a\)

- **Sla**
 - Set the steering left at angle \(a\)

- **A?**
 - Set the articulation angles of all units interactively
 - (prompts for unit and then angle)

- **An?**
 - Set the articulation angle of unit \(n\) interactively
 - (prompts for just the angle)

- **An a**
 - Set the articulation angle of unit \(n\) degrees to the right

- **An +a**
 - Set the articulation angle of unit \(n\) degrees to the right

- **AnRa**
 - Set the articulation angle of unit \(n\) degrees to the right

- **An –a**
 - Set the articulation angle of unit \(n\) degrees to the left

- **AnLa**
 - Set the articulation angle of unit \(n\) degrees to the left
Script Commands: Drive

Drive commands take the general form:-

{(Direction)}{(Manoeuvre)}{(Turn condition)}{(Stop condition)}

In the following list {S} indicates a mandatory stop condition and {T} indicates an optional turn condition.

F{S}
Drive forwards at current steering angle

R{S}
Reverse at current steering angle

FC{S}
Drive forwards at current steering angle

RC{S}
Reverse at current steering angle

FH{S}
Drive forwards with hands off
(i.e. maintaining current wheel heading)

FL{T}{S}
Drive forwards and turn left as tightly as possible

RL{T}{S}
Reverse and turn left as tightly as possible

FR{T}{S}
Drive forwards and turn right as tightly as possible

RR{T}{S}
Reverse and turn right as tightly as possible

Script Commands: Stop Conditions {S}

A vehicle will automatically stop if it encounters an error state, for example if it over-articulates.

A
Stop when the wheel angle has increased by angle a
(in the direction of the turn)
N.B. applies only to turn commands, e.g. FL, FR, etc

Ba
Stop when the wheel bearing has reached a

Wa
Stop when the wheel angle has increased by angle a
(in the direction of the turn)

Wba
Stop when wheel bearing reaches a in the current UCS

d
Stop after distance d
N.B. applies only to non-turn commands, e.g. F, R, etc

Dd
Stop after distance d

Ta
Stop when tractor spine angle has increased by angle a

Tba
Stop when tractor spine reaches bearing a in the current UCS
\textbf{Un a}
Stop when the spine angle of unit n has increased by angle a

\textbf{UnBa}
Stop when the spine angle of unit n reaches bearing a in the current UCS

\textbf{Aa}
Stop when any articulation angle exceeds angle a

\textbf{An a}
Stop when the articulation angle of unit n exceeds angle a

\textbf{An1:n2a}
Stop when the articulation angle between units n_1 and n_2 reaches angle a

\textbf{Script Commands: Turn Conditions [T]}

\textbf{Cr}
Set the steering to achieve a centre line chassis radius r

\textbf{Or}
Set the steering to achieve an outer wheel radius r

\textbf{Ir}
Set the steering to achieve an inner wheel radius r

\textbf{Obr}
Set the steering to achieve an outer body radius r

\textbf{Ibr}
Set the steering to achieve an inner body radius radius r

\textbf{Sa}
\textbf{S+a}
Set the steering right at angle a

\textbf{S-a}
Set the steering left at angle a
Guided Drive (only Light Rail version)

The Guided Drive mode is used for trams and other light rail vehicles in which the vehicles position is entirely dictated by the rail layout.

To use Guided Drive

1. Select **Guided Drive** from the AutoTrack drop down menu or click the **Guided Drive** button on the AutoTrack toolbar.

2. If you have a default vehicle set up then AutoTrack will use this vehicle and you should go to step 6. If you want to use a different vehicle then right click now and refer to Changing your vehicle. Otherwise...

3. If you have a path pre-selected then AutoTrack will use the current vehicle and position and you should go to step 7. Otherwise...

4. The Library Explorer will appear for you to select a vehicle.

5. Select a vehicle and click **Proceed**. For help on how to select a vehicle refer to Selecting a vehicle to drive later in this section.

6. Pick an AutoCAD polyline (which may be 2D, 3D, splined, curve-fitted or contain straight and/or arc segments) or MicroStation complex chain. The vehicle will follow the line starting at the end closest to the point picked. Closing segments of closed polylines are ignored.

7. The Guided Drive Settings dialog will appear.
8. Make sure that, if you want the vehicle to reverse along the line, the **Direction** is set to Reverse and then click **OK**.

9. The swept path will be generated and the path redrawn.
Vertical Clearance

This drive mode allows you to model the vertical movement envelope of a vehicle. This then enables you to check for grounding of the vehicle or overhead impacts with other structures. The vehicle is assumed to have all wheels in contact with the road at all times. In the case of multiple axles this means that there may be some vertical movement of individual axles. This movement approximates to the behaviour of the vehicles suspension.

To use Vertical Clearance

1. Select Vertical Clearance from the AutoTrack drop down menu or click the Vertical Clearance button on the AutoTrack toolbar.

2. If you have a default vehicle set up then AutoTrack will use this vehicle and you should go to step 5. If you want to use a different vehicle then right click now and refer to Changing your vehicle. Otherwise...

3. The Library Explorer will appear for you to select a vehicle.

4. Select a vehicle and click Proceed. For help on how to select a vehicle refer to Selecting a vehicle to drive later in this section.

5. Pick an AutoCAD polyline (which may be 2D, 3D, splined, curve-fitted or contain straight and/or arc segments) or MicroStation complex chain. The vehicle will follow the line travelling forwards starting at the end closest to the point picked. Closing segments of closed polylines are ignored.

6. The swept path will be generated and the path redrawn.
Note
It is assumed that all wheels will remain in contact with the road. In order to do this some wheels will rise and some will fall. The extent of this movement is not controllable by the user.

Warning
Vertical Clearance mode uses default values for ground clearance and overall height that are unlikely to match your requirements. In order to generate useful results you **MUST** obtain and enter the accurate height and ground clearance.
Park a Vehicle

This drive mode is included as a quick way to insert parked vehicles. For example, when designing a loading bay you may wish to model the case in which the bays on either side are occupied. The mode is functionally equivalent to starting an AutoDrive command and cancelling after the vehicle has been positioned.

To use Park a Vehicle

1. Select Park a Vehicle from the AutoTrack drop down menu or click the Park a Vehicle button on the AutoTrack toolbar.

2. If you have a default vehicle set up then AutoTrack will use this vehicle and you should go to step 5. If you want to use a different vehicle then right click now and refer to Changing your vehicle. Otherwise...

3. The Library Explorer will appear for you to select a vehicle.

![Library Explorer dialog]

4. Select a vehicle and click Proceed. For help on how to select a vehicle refer to Selecting a vehicle to drive later in this section.

5. Position and orient your vehicle and click Finish. For help on how to position a vehicle refer to Positioning a vehicle interactively later in this section. Note that if you move the vehicle over an AutoTrack parking bay the vehicle will automatically park in the correct position and orientation in the bay.

6. The vehicle is inserted as a path with no length and can, if needed, be selected and driven just like any other existing path.
Selecting a vehicle to drive

For details of the vehicles see Vehicle Libraries.

1. If you don’t have a default vehicle selected or you wish to use a different vehicle select Vehicle Library from the AutoTrack drop down menu or click the Vehicle Library button on the AutoTrack toolbar. The Library Explorer will appear.

2. If you do not have a vehicle library loaded all you will see is a bookshelf icon with the text Pool beside it. This represents the pool of vehicles used in and saved with your drawing.

3. If you have already used a vehicle then there will be a small + symbol beside the Pool icon. Click on this and the Pool will expand to list the vehicles held in the drawing.

4. The buttons at the top are mutually exclusive and allow you to group the vehicles by Vehicle Group (default), Category, Classification, Type or Ungrouped. There is also an option to display all vehicles for all libraries together.

5. The arrow on the header bar allows you to list the data in ascending or descending alphanumeric order. Click on the arrow to change the order or click on another column header to sort by another item of data.

6. You can add or remove data from the display by clicking the Insert/Remove Columns button. See Customising the Library Explorer view (Library Explorer Columns dialog) (3515).

7. Click the Vehicle Diagram button to switch the vehicle diagram on and off. See Vehicle Diagram dialog for details.

8. For more details of the Library Explorer dialog see Viewing a vehicle in a library or the pool (Library Explorer dialog) (3510) in Viewing and editing vehicles.)
To open a vehicle library

1. To open a library, select Open Library from the File menu on the Library Explorer or right click and select Open Library from the menu that appears.
2. Browse to the Library subdirectory of the AutoTrack directory, select a library and click Open.
3. A new Vehicle Library icon will appear in the Library Explorer with the name of the library beside it.
4. Click on the + symbol to expand the library.

To select a vehicle from a loaded library

1. Vehicle libraries are indicated by a bookshelf icon.
2. Click on the + symbol beside the library (or pool) that contains the required vehicle. The library will expand to reveal a list of vehicle groups.
3. Expand the category by clicking on the + symbol. A list of vehicles will appear.
4. Highlight a vehicle and click Proceed to select it.
5. If you do not have a default vehicle set then you will be asked if you want to make this your default vehicle. See Default Vehicle dialog.
6. If your scale appears to be incorrect you will be given the opportunity to change it. See Scale dialog.
7. The vehicle has been selected and may now be positioned. Proceed to Positioning a vehicle interactively.

Note

If you have the prompt for scale option enabled you will see the Drawing Settings dialog before the Position Vehicle dialog.

To close a vehicle library

1. Highlight the library that you want to close.
2. Select Close Library from the File menu on the Library Explorer or right click and select Close Library from the menu that appears.
3. The selected library will be removed from the Library Explorer.

To set a default vehicle

1. Highlight the vehicle that you want to set as your default and click the Make Default button.
2. The next time you select a drive mode this vehicle will be used.
Default Vehicle dialog \(^{(5100)}\)

1. AutoTrack allows you to define a default vehicle, i.e. a vehicle that will be used every time you start to drive unless you actively select an alternative. This can be very useful if you regularly use the same vehicle. If you select a vehicle to drive and you do not have a default vehicle set the Default Vehicle dialog will appear.

 ![Default Vehicle dialog](image)

 Default Vehicle dialog

2. If you select **Yes** then this vehicle will be selected automatically next time you use any drive command. If you select No then you will be asked this again the next time you select a vehicle in similar circumstances.

3. If you don’t want to be asked again then tick **Don’t ask me this again**.

Scale dialog \(^{(5130)}\)

1. If you are using the wrong units, e.g. AutoTrack is set to use millimeters but your drawing is in metres, your vehicle will appear out of proportion with the background. If this occurs and you have automatic scale checking enabled the Scale dialog will appear.

 ![Scale dialog](image)

 Scale dialog

2. Check your units are correct and change them if necessary.

3. If you want to switch off automatic scale checking then tick **Don’t ask me this again**.
Changing your vehicle

You can change your vehicle selection at any time before you start driving.

To change the selected vehicle

1. Right click to display the Position Vehicle dialog.

 ![Position Vehicle dialog](image)

 - Current vehicle
 - Large Articulated Vehicle
 - Vehicle orientation
 - View
 - Proceed
 - Cancel
 - Help

2. Click the **Vehicle Library** button.

3. Select the new vehicle. For help on how to select a vehicle refer to Selecting a vehicle to drive in this section.

4. Click **Proceed** to position the vehicle interactively.
Positioning a vehicle interactively

The vehicle orientation can be adjusted interactively until you start to drive. Once you have started to drive you may adjust the initial orientation using the Path tools.

With the vehicle selected move the cursor along the spine of the vehicle. Notice the small square that appears at each coupling point and at the front axle of the first unit. This is called a grip and is used to change between adjusting position, heading and articulation.

To change the position of the vehicle

1. Move the cursor until the positioning grip appears over the front axle of the first unit and left click.
2. Use the mouse to move vehicle to the required location and left click to confirm.

To change the heading of the vehicle

1. Move the cursor until the positioning grip appears at the rear coupling of the first unit and left click.
2. Use the mouse to adjust the heading of the entire vehicle and left click to confirm.

To adjust the articulation

1. Move the cursor until the positioning grip is at the coupling point whose angle you want to adjust and left click.
2. Use the mouse to adjust the articulation angle and left click to confirm.
Positioning a vehicle (Position Vehicle dialog)

If you don’t want to use the interactive vehicle positioning right click immediately after selecting your vehicle and the Position Vehicle dialog will appear.

![Position Vehicle dialog](image)

To set or change the position of the vehicle

1. Click the Location button.
2. Use the mouse to move the vehicle and click the mouse button to confirm.

To set or change the heading of the entire vehicle

1. Click the Heading button.
2. Use the mouse to adjust the orientation and click the mouse button to confirm.

To set or change the starting steering angle

1. Click the Steering button.
2. Use the mouse to adjust the steering angle and click the mouse button to confirm.

To set or change the starting orientation of a selected spine

1. Click the Articulation button.
2. If there is only one articulation point then you will automatically be requested to adjust the trailer spine. If there is more than one articulation point you will be asked to pick the unit that you want to adjust. In either case simply move the cursor to reorient the appropriate spine and click the mouse button to confirm.
To position the vehicle at the start of an existing path
1. Click the **Start of Path** button.
2. You will be asked to select the path.

To position the vehicle at the end of an existing path
1. Click the **End of Path** button.
2. You will be asked to select the path.

To position the vehicle at a point on an existing path
1. Click the **Point on Path** button.
2. You will be asked to point to the required position.

To view the path properties
1. Click the **Properties** button.

To view the model settings
1. Click the **Model** button.

To undo the last operation
1. Click the **Undo** button.

To start driving
1. Click the **Proceed** button.
2. The **Drive** dialog (or the Drive command line) will appear.

To adjust the view
For your convenience the View toolbar functions are repeated on this dialog. For help in adjusting the view refer to Adjusting the view.
Adjusting the view (View toolbar)

Whilst you can use the built-in CAD functions to manipulate the view, AutoTrack includes a number of intelligent view functions that take account of the current AutoTrack path.

To reset any drawing rotation

1. Select Rotate, Reset from the AutoTrack, View drop down menu or click the Reset Rotation button.
2. The drawing rotation will be reset to zero.

To rotate the drawing to the left

1. Select Rotate, Left from the AutoTrack, View drop down menu or click the Rotate Left button.
2. The drawing will be rotated 45 degrees to the left.

To rotate the drawing to the right

1. Select Rotate, Right from the AutoTrack, View drop down menu or click the Rotate Right button.
2. The drawing will be rotated 45 degrees to the right.

To rotate the drawing automatically

1. Select Rotate, Auto from the AutoTrack, View drop down menu or click the AutoRotate button.
2. The drawing will be rotated until the steered wheels point directly up the screen.

To pan the image (e.g. if the vehicle is close to the edge of the window)

1. Select AutoPan from the AutoTrack, View drop down menu or click the AutoPan button.
2. By default this will move the drawing so that after the pan the steered wheels of the vehicle are located slightly off centre and pointing directly through the centre of the screen. Depending upon your settings the drawing may also be rotated.

To zoom in

1. Select Zoom, In from the AutoTrack, View drop down menu or click the Zoom In button.
2. The screen image will be magnified by a factor of 2.

To zoom out

1. Select Zoom, Out from the AutoTrack, View drop down menu or click the Zoom Out button.
The screen image will be reduced by a factor 0.5.

To show only the vehicle body

1. Select **Show Body** from the AutoTrack, View drop down menu or click the **Show Body** button.
2. Only the body of each unit to will be displayed whilst driving.

To show only the vehicle chassis

1. Select **Show Chassis** from the AutoTrack, View drop down menu or click the **Show Chassis** button.
2. Only the chassis of each unit will be displayed whilst driving.

To show both the vehicle body and chassis

1. Select **Show All** from the AutoTrack, View drop down menu or click the **Show All** button.
2. Both the body and the chassis of all units will be displayed whilst driving.
Adjusting the path alignment (Path toolbar)

All paths, except those created using Guided Drive, are stored as a series of target points through which the vehicle is required to drive. AutoTrack allows you to move the target points of a path, dynamically updating the path to reflect changes in position.

If you edit the path in such a way that the vehicle cannot get from a given point to the next target the remainder of the path will drawn as a single line (red by default). See Undriveable Paths.

1. Click the Edit Path button on the toolbar. The Path toolbar will appear.

To see the target points on the path

Target points are shown as small diagonal crosses along the path. If you cannot see any target points on your path make sure that you have them enabled. To do this…

1. Select Properties from the AutoTrack drop down menu or click the Properties button on the main AutoTrack toolbar and select the path if necessary. The Path Properties dialog will appear.

2. Select the Reports tab.

3. Expand the Construction Lines report by clicking on the small + symbol.

4. Now make sure that both the Construction Lines report and the Target Points sub-report are ticked.

To see the steering pointer

The steering pointer is a line drawn from the centre of the primary steered axle at the same angle as the steered wheels. If you cannot see the steering pointer then make sure you have it enabled. To do this…

1. Select Properties from the AutoTrack drop down menu or click the Properties button on the main AutoTrack toolbar and select the path if necessary. The Path Properties dialog will appear.

2. Select the Reports tab.

3. Expand the Construction Lines report by clicking on the small + symbol.

4. Now make sure that both the Construction Lines report and the Steering Pointer sub-report are ticked.
To adjust the vehicle start position (not Light Rail version)

5. Select Initial Location from the AutoTrack, Path drop down menu or click the Location button on the Path toolbar.
6. Select the path if necessary.
7. Move the mouse until the vehicle is in the required location and left click to confirm.

To adjust the vehicle start heading (not Light Rail version)

1. Select Initial Heading from the AutoTrack, Path drop down menu or click the Heading button on the Path toolbar.
2. Select the path if necessary.
3. Move the mouse until the vehicle is in the required orientation and left click to confirm.

To adjust the vehicle start steering angle (not Light Rail version)

1. Select Initial Steering Angle from the AutoTrack, Path drop down menu or click the Steering button on the Path toolbar.
2. Select the path if necessary.
3. Move the mouse until the steering is at the required angle and left click to confirm.

To adjust the vehicle start spine angles (not Light Rail version)

1. Select Initial Articulation Angle from the AutoTrack, Path drop down menu or click the Articulation button on the Path toolbar.
2. Select the path if necessary.
3. Select the required unit and move the mouse until it is in the required orientation and then left click to confirm.

To move the path

1. Select Move from the AutoTrack, Path drop down menu or click the Move Path button on the Path toolbar.
2. Select the path if necessary.
3. Left click at the base point.
4. Move the mouse to move the path and click again to confirm the displacement.
To rotate the path

1. Select **Rotate** from the AutoTrack, Path drop down menu or click the **Rotate Path** button on the Path toolbar.
2. Select the path if necessary.
3. Left click to specify the base point about which the path is to be rotated.
4. Move the mouse to rotate the path and click again to specify the rotation angle.

To copy the path

1. Select **Copy** from the AutoTrack, Path drop down menu or click the **Copy Path** button on the Path toolbar.
2. Select the path if necessary.
3. Move the mouse until the copy is in the required position and left click to confirm.

To explode the path entity (or cell)

1. Select **Explode** from the AutoTrack, Path drop down menu or click the **Explode Path** button on the Path toolbar.
2. Select the path if necessary.
3. The path will be exploded into standard CAD entities.

To delete a path

1. Select **Delete** from the AutoTrack, Path drop down menu or click the **Delete Path** button on the Path toolbar.
2. Select the path if necessary.
3. The path will be deleted.

To trim the start of the path

1. Select **Trim to Start** from the AutoTrack, Path drop down menu or click the **Trim to Start** button on the Path toolbar and select the path if necessary.
2. As you move the cursor over the path a small square will be drawn at the point on the path closest to the cursor. Move the cursor until the square is in the required position and the click the left button to confirm.
3. The section of path from the selected point to the start will be deleted. If you wish to trim back to the start of a manoeuvre select **start of Manoeuvre** from the command line option. The vehicle will only be drawn at the start of each manoeuvre (i.e. at each target point). Again click the left button to confirm.
To trim the end of the path

1. Select Trim to End from the AutoTrack, Path drop down menu or click the Trim to End button on the Path toolbar and select the path if necessary.

2. As you move the cursor over the path a small square will be drawn at the point on the path closest to the cursor. Move the cursor until the square is in the required position and the click the left button to confirm.

3. The section of path from the selected point to the end will be deleted. If you wish to trim back to the start of a manoeuvre select start of Manoeuvre from the command line option. The vehicle will only be drawn at the start of each manoeuvre (i.e. at each target point). Again click the left button to confirm.

To move target points
(not Light Rail version)

1. Select Edit Target Points from the AutoTrack, Path drop down menu or click the Edit Target Points button on the Path toolbar and select the path if necessary.

2. A small square will appear on the path and move as you move the mouse. This square represents the point to be moved.

3. Move the mouse until the square is at the target point that you wish to move (it snaps and changes colour when you get close to one) and left click to select it.

4. Now move the mouse until the selected point is in the required new location and left click to confirm.

To insert a new target point
(not Light Rail version)

Normally it is preferable to use the fewest possible target points as this will produce the smoothest path. However, there will be cases where you need to insert a new target point.

1. Select Edit Target Points from the AutoTrack, Path drop down menu or click the Edit Target Points button on the Path toolbar and select the path if necessary.

2. A small square will appear on the path and move as you move the mouse. This square represents the point to be edited or the point at which a new target would be inserted.

3. Move the mouse until the square is at the position at which you want to insert the new target (may not be a target point already) and left click to confirm. A new target point will appear (indicated by a diagonal cross) and can be moved in the normal way.
To remove intermediate target points
(not Light Rail version)

1. Select **Edit Target Points** from the AutoTrack, Path drop down menu or click the **Edit Target Points** button on the Path toolbar and select the path if necessary.

2. A small square will appear on the path and move as you move the mouse. This square represents the point to be edited.

3. Move the mouse until the square is at the point that you want to delete (it snaps and changes colour when you get close to one) and left click to confirm.

4. Now move the mouse to the preceding or following target point (denoted by diagonal crosses) and click the left button again. The selected target point will be removed.

To delete the last target point
(not Light Rail version)

1. Select **Delete Last Target** from the AutoTrack, Path drop down menu or click the **Delete Last Target** button on the Path toolbar and select the path if necessary.

2. The last target point on the selected path will be removed.

Tip

You can delete the last target point “on-the-fly” whilst using AutoDrive. Left click with the cursor inside the wheelbase of the last drawn vehicle position.
Adjusting the path alignment using grip editing (not MicroStation version)

All paths, except those created using Guided Drive, are stored as a series of target points through which the vehicle is required to drive. The Dynamic Edit functionality incorporated in AutoTrack allows you to move the target points of a path, dynamically updating the path to reflect changes in position.

If you edit the path in such a way that the vehicle cannot get from a given point to the next target the remainder of the path will drawn as a single line (red by default). See Undriveable Paths.

Note
AutoDrive and Dynamic Edit are options and may not be available on your copy. Grip editing is not available on MicroStation versions due to limitations inherent in that CAD system.

To see the target points on a path

1. Target points are shown as small diagonal crosses along the path.
2. If you cannot see any target points on your path make sure that you have target point markers enabled in the Construction Lines settings. To do this select the path, click on the Properties button on the AutoTrack toolbar, select the Reports tab. Expand the Construction Lines report, by clicking on the + symbol, and make sure that both Construction Lines and Target Points are ticked.
3. Editing grips (small squares) will appear along the path when it is selected. Grips that do not have a cross are called referred to as intermediate grips. If you cannot see any intermediate grips you may need to change your drive settings. To do this click on the System Settings button on the AutoTrack toolbar, select the AutoDrive tab and check that Intermediate Grips is ticked. Intermediate points will be inserted as long as the distance between target points exceeds the Minimum Distance between Intermediate Grips.

To see the steering pointer

The steering pointer is a line drawn from the centre of the primary steered axle at the same angle as the steered wheels.

1. If you cannot see the steering pointer then make sure you have the steering pointer enabled in the Construction Lines settings. To do this select the path, click on the Properties button on the AutoTrack toolbar, select the Construction Lines tab followed by the Steering Pointer tab and make sure that both Construction Lines and Steering Pointer are ticked.
To adjust the vehicle start heading
(not Light Rail version)

1. Select the path that you want to edit so that the editing grips appear.
2. Select the first unit by selecting its rearmost grip.
3. Move the mouse to rotate the units and left click again to confirm the new position.

To adjust the vehicle start steering angle
(not Light Rail version)

1. Select the path that you want to edit so that the editing grips appear.
2. Select the grip at the end of the steering pointer. It will change colour.
3. Move the mouse to adjust the steering angle and left click again to confirm the new angle.

To adjust the vehicle start spine angles
(not Light Rail version)

The spine angles are adjusted by rotating a selected unit and all those behind it about the front articulation point of the selected unit.

1. Select the path that you want to edit so that the editing grips appear.
2. Select the unit that you want to adjust by selecting its rearmost grip.
3. Move the mouse to rotate the units and left click again to confirm the new position.

To move a path

Adjusting the vehicles start position has the effect of moving the entire path.

1. Select the path that you want to move so that the editing grips appear.
2. Select the grip at the centre of the primary steered axle. It will change colour and as you move the mouse the path will move.
3. Move the point to its new location and left click again to release it.

To move a target point
(not Light Rail version)

1. Select the path that you want to edit so that the editing grips appear.
2. Select the target point that you want to move by clicking the left mouse button when the cursor is over the appropriate grip. It will change colour and as you move the mouse the path will change shape.
3. Move the point to its new location and left click again to release it.

4. If the new position means that the vehicle cannot complete the manoeuvre a single line will connect the point to the last acceptable target point. This line represents the Errored Path.

To adjust a bearing turn
(not Light Rail version)

1. Select the path that you want to edit so that the editing grips appear.

2. All bearing turns should have two parallel dotted lines adjacent to the entry to and the exit from the turn. If you cannot see these lines, open the Report Wizard, go to the Construction Lines page and make sure that Drag Lines are ticked.

3. The lines closest to the centerline of the path cannot be moved and are tangents to the entry and exit alignments. The outer lines have a grip at both ends. Pick one of these grips and drag it away from or towards the other line to increase or decrease respectively the offset. If you move the outer line until it is on top of inner line, the offset will be reduced to zero.

To insert a new target point
(not Light Rail version)

1. Select the path that you want to edit so that the editing grips appear.

2. In between the target point markers there may be intermediate grips.

3. Select the intermediate grip closest to where you wish to insert the target point. The grip will become a target point and can now be moved to its required exact location like any other target point.

4. If you cannot see any intermediate grips you may need to change your AutoDrive settings. To do this click on the System Settings button on the AutoTrack toolbar, select the AutoDrive tab and check that Intermediate Grips is ticked. Intermediate points will be inserted such that the distance between adjacent grips exceeds the Minimum Distance between Intermediate Grips.

To remove a target point
(not Light Rail version)

1. Select the path that you want to edit so that the editing grips appear.

2. Select the target point that you want to remove.

3. Drag the point over the top of the preceding or following target point and drop it by clicking the left mouse button. The selected target point will be removed.
4. You may only remove one target point at a time. If you drop the selected point onto an intermediate grip the point will not be removed but moved and this may result in an errored path.

To add or remove intermediate grips

1. Intermediate grips are automatically inserted between target points and are used solely for editing. You may adjust the number of intermediate grips by changing your AutoDrive settings.

2. To do this click on the **System Settings** button on the AutoTrack toolbar, select the AutoDrive tab and check **Intermediate Grips** is ticked. Intermediate points will be inserted such that the distance between adjacent grips exceeds the **Minimum Distance between Intermediate Grips**.
If you try to edit a path that consists of many closely spaced target points (which tends to happen when using Manual Drive) you may end up with an undriveable path. Under these circumstances you may need to delete some target points. AutoTrack may offer to perform this operation on the section of path from the point you dragged to the end. You will see the Undriveable Path dialog.

1. Select **Yes** to allow AutoTrack to remove points automatically or **No** if you wish to edit the path manually.

2. If you select **Yes** AutoTrack will remove closely spaced points on the section of path from the selected point to the end of the path. This may not always result in a driveable path, because it only removes points and does not optimise the remaining, but is nevertheless the recommended option. Use Undo to restore the path if you don’t like the changes that AutoTrack makes.

3. If you select **No** then the path will not be altered (apart from storing the data slightly differently – see below).

Warning

Manual Drive path data is converted to AutoDrive target points as soon as you try to edit it. For this reason changing a model value on a non-errored path, that results in a path error and then changing it back will not necessarily result in the original non-errored path. To get back the original path you should use Undo.
Extending or trimming a path

Once created paths can be extended or trimmed very easily.

To extend a path

1. Select the path that you want to extend.
2. Select a drive mode from the AutoTrack drop down menu or by clicking the appropriate button on the main AutoTrack toolbar.
3. Resume driving from the end of the path.

To trim the start of the path

1. Select Trim to Start from the AutoTrack, Path drop down menu or click the Trim to Start button on the Path toolbar and select the path if necessary.
2. As you move the cursor over the path a vehicle will be drawn at the point on the path closest to the cursor. Move the cursor until the vehicle is in the required position and the click the left button to confirm. The section of path from the selected point to the start will be deleted.
3. If you wish to trim back to the start of a manoeuvre select start of Manoeuvre from the command line option. The vehicle will only be drawn at the start of each manoeuvre (i.e. at each target point). Again click the left button to confirm.

To trim the end of the path

1. Select Trim to End from the AutoTrack, Path drop down menu or click the Trim to End button on the Path toolbar and select the path if necessary.
2. As you move the cursor over the path a vehicle will be drawn at the point on the path closest to the cursor. Move the cursor until the vehicle is in the required position and the click the left button to confirm. The section of path from the selected point to the end will be deleted.
3. If you wish to trim back to the start of a manoeuvre select start of Manoeuvre from the command line option. The vehicle will only be drawn at the start of each manoeuvre (i.e. at each target point). Again click the left button to confirm.
Template Generator

Generating turn templates

AutoTrack can generate templates for standard turning manoeuvres. The templates are inserted as drawing entities. The Template Wizard generates turns assuming the front wheels of the vehicle follow a circular arc.

To generate a turn template

1. If you are using the stand-alone standard Templates version then when you run the software you will automatically be placed on the first page of the Template Wizard.
2. If you are running any other version then you should select Generate Turn Template from the AutoTrack menu or click the Generate Turn Template button on the AutoTrack toolbar. The Template Wizard will appear (see The Template Wizard).

The Template Wizard

The Template Wizard allows you to generate turn templates for any of the hundreds of supplied vehicles. It will even allow you to generate templates for user defined vehicles although users of the basic product should be aware that vehicle editing facilities are not included.

The Template Generator uses fixed report settings (colour, linetype, etc) that the user cannot change.

DXF files produced by the Template Generator are created in AutoCAD R14 format, i.e. that they do not use the LWPOLYLINE entity.
Template Wizard: Type

1. The first page of the Template Wizard lets you specify the type of template.

2. Select the type of template that you wish to generate, **Printed Template(s)**, **DXF file** or **Block Insert (into the current drawing)**. Note that only the printing option is available to users of the standard Templates product.

3. **Printed Templates**

 Select the printer if necessary using the Change button.

 Set the Scale. The option (Auto Select) will pick the largest sensible scale taking into account the manoeuvre and paper size. The option (Scale to Fit Paper) will produce the largest true to scale template that will fit on the paper.

4. **DXF File (not standard Templates version)**

 Enter the file name using the Browse button if necessary.

 Set the scale of the template, e.g. if you normally prepare drawings in millimetres then set the scale to 1 drawing unit represents 1 millimetre. If you use various drawing units then either generate templates in each unit or simply scale the block upon insert into the drawing.

5. **Block insert (not standard Templates version)**

 Set the scale of the template, e.g. if you are inserting the block into a drawing prepared in millimetres then set the scale to 1 drawing unit represents 1 millimetre.

4. Click **Next** to move the next page.
Template Wizard: Vehicle *(6510)*

1. The Vehicle page lets you select the vehicle(s) for your templates.

2. Select the vehicle you wish to generate the template for, clicking on the + symbol to expand a library or group and – to collapse it. Note that printed templates can be generated for an entire group or library at a time.

3. If the selected vehicle cannot perform the turn requested, because it has very strict articulation limits for example, the template will only show the part that could be negotiated.

4. Click **Next** to move to the next page.
Template Wizard: Model Settings

1. The Model Settings page lets you control the turn transition.

 - Limit turn rate

 - Based upon lock to lock time (defined in vehicle) and design speed

 - Based upon lock to lock distance

 - Based upon a circular tangential arc

2. Tick Limit turn rate if you want to include a transition curve into the turn. If you leave this unticked the vehicle will be able to turn instantaneously. Note that there are various official sources of printed templates available, e.g. the AASHTO Green Book. If you wish to generate templates that match these you will need to select the correct transition curve. In the case of the AASHTO standard you should set the transition to Based upon a circular tangential arc.

Note
These settings apply only to template generation and do not affect other drive modes.
Template Wizard: Turn Angles

1. The Turn Details page lets you define the content of the templates.

2. By default the vehicle will turn as tight as it can. If you want the vehicle to turn on a specific radius, around a roundabout for example, then select Turn at a fixed radius and enter the inner, outer or centreline body or chassis radius.

3. To specify the Turn angles you require tick a box and enter the angle in the box provided.

4. The Angles button toggles through various combinations of angles. You may disable as many or as few of the angles.

5. You may also specify overturns. Tick Side overturn or Exit overturn and enter the deviation distance from the normal path. The Max overturn angle controls the severity of the overturn by limiting the angle by which the vehicle may deviate from the optimum path.

6. Click Next to move to the next page.
Template Wizard: Format

1. The Format page lets you specify the presentation of your template(s).

2. Select the **Vehicle start orientation**. Note that if you are inserting the template into a drawing you will be able to rotate it as it is inserted.

3. Select the **Vehicle turn direction**. If you are generating printed templates then this may be affected by which side of the road you drive on.

4. Tick **Wheel track envelope** if kerbs are likely to be critical and / or **Body envelope** if walls or other high level obstacles are likely to be critical. Tick **Offset body envelope** to show an envelope with clearance margin. You can adjust the offset distance.

 Note

 You must select at least one of these reports but you may select more than one.

5. Tick **Add vehicle diagram** to show a dimensioned image of the vehicle alongside the template. This is particularly useful on the printed templates.

6. If you are generating printed templates then you may wish to tick **Place in a title block**. This will add a title block with the vehicle name and other details.

7. Click **Finish** to generate the template.

8. If you are inserting a block then move it into position and confirm by left clicking. You may use the Rotate command to adjust the orientation.
Viewing and editing paths

All swept paths, as long as they have not been exploded can be edited to adjust the colour, content or even alignment. The AutoTrack Properties command lets you edit a single path whilst the Drawing Explorer allows you to copy path attributes between drawings.

Viewing the properties of a path (Path Properties dialog)

1. Select the path whose properties you wish to see.
2. Select Properties from the AutoTrack drop down menu or click the Properties button on the AutoTrack toolbar.
3. The Path Properties dialog will appear with the Path Notes tab displayed.

4. Enter values in the fields provided and click OK to confirm and close the dialog.
5. Click Apply if you wish to confirm the changes but not close the dialog. Click Cancel to abort all changes since the last time you clicked Apply.
Path Properties: Path Notes

1. Click on the Path Notes tab.
2. Edit the Title and Comments as required.
3. AutoCAD version

The Layer Name Prefix is the AutoCAD base layer name as defined by your selected layering convention. If you are not using a layering convention this is the current layer.

MicroStation version

The Base Level is the level on which the path exists. You may change this to any other level from 1 to 63 by selecting from the drop down list.

4. The Path Scale is a read only field. It shows the scale of the selected path. When using XREF drawings in AutoCAD or reference drawings in MicroStation there is a risk that incompatible units can be used alongside one another.

Path Properties: Vehicle

1. Click on the Vehicle tab.

Path Properties dialog: Vehicle tab

5. You may not edit the vehicle details but the details are the same as display in the Creating a new library (Library Details dialog).

6. Click on the View button to look at the unit details which again are as displayed in the Unit Details dialog.
Path Properties: Manoeuvres

1. Click on the Manoeuvres tab. A list of manoeuvres is displayed, each one representing a section of path, which can be driven with a single drive ‘command’. The name is normally blank but will contain the text ** Model Change ** if a model setting changes at this manoeuvre. The first section will contain the text ** Initial Model **.

2. As you move the cursor down the list a ghost image of the vehicle is drawn at the start of the manoeuvre section of path.

3. Click Edit to view the Model and Speed settings. If you change a setting then the text ** Model Change ** will appear in the Name. Edit the manoeuvre reference New to change the model for future manoeuvres.

Tip
To quickly change the model settings from the end of an existing path then highlight the path and click the Current Model button on the AutoTrack main toolbar. This has the same effect as editing the New manoeuvre as above.

4. Click Delete Model to remove a model change.

5. Enter values in the fields provided and click OK to confirm and close the dialog.

6. Click Apply if you wish to confirm the changes but not close the dialog. Click Cancel to abort all changes since the last time you clicked Apply.
Path Properties: Manoeuvres: General

1. Click on the General tab.

2. Edit the Description and Comments as required. The description is displayed in the manoeuvres list.

Path Properties: Manoeuvres: Speed

1. Click on the Speed tab.

2. See Settings: Speed.

Path Properties: Manoeuvres: Tracking Point

1. Click on the Tracking Point tab.

2. See Settings: Tracking Point.

Path Properties: Manoeuvres: Model

1. Click on the Model tab.

2. See Settings: Model.

Path Properties: Manoeuvres: Dynamics

1. Click on the Dynamics tab.

2. See Settings: Dynamics.
Path Properties: Reports

1. Click on the Reports tab. A list of all current reports will appear.

![Path Properties dialog: Reports tab](image)

2. Click the + symbol to expand the explorer view and tick those elements that you want to include.

3. To edit a report see Settings: Reports.
Viewing the properties of all paths (Drawing Explorer)

Sometimes you need to edit more than one path. For example, to apply the same colours and report settings to all paths. The Drawing Explorer allows you to edit all paths in all drawings.

1. Select **Drawing Explorer** from the AutoTrack drop down menu or click the **Drawing Explorer** button on the AutoTrack toolbar. The Drawing Explorer dialog will appear.

 ![Drawing Explorer dialog](image)

 Drawing Explorer dialog

2. At the top of the window are the New Drawing Settings. This expands to display New Report Settings and New Path Settings. These are the default settings for new drawings; i.e. the values stored in the settings files. The New Report Settings are used when you create a new report and the New Path Settings are used when you create a new path.

3. Underneath the New Drawing Settings are listed all the drawings that are currently open. Each one expands to display New Report Settings, New Path Settings and a list of paths. The New Report Settings and New Path Settings are the defaults used when you create a new report or path in the current drawing.

4. Each Path expands to display the Construction Lines and a list of Reports used by that path. This is the same list that you see when you edit a single path by clicking **Properties, Reports**. To edit a report or construction line element highlighting it and click **Edit** exactly as you do when you edit a single path using **Properties**.

5. To add a copy of a report, highlight it and click **Duplicate**. You can then use **Edit** to modify it.

6. To rename a report highlight the report and click **Rename**.

7. To add a new report based upon the new report settings for that drawing, highlight the report and click **New**.
8. To remove a report from the list, highlight it report and click **Delete**.

9. To apply the properties of a report element, a set of reports or a path to another like element, highlight the element you want to copy and click **Select**. Now go to the destination report element and click **Replace**. You can apply the properties to as many elements as you wish by highlighting them and clicking **Replace** or click **Replace All** to apply the properties to all the elements.

10. If the destination element is more senior in the hierarchy (a drawing contains paths and paths contain reports) then the properties of all child elements in the destination of the same type as the source element will be replaced with the source. This is best illustrated by a few examples:-

 Example 1
 If you select a report and replace a different report, the properties of the replaced report will simply be changed to match the selected report, i.e. the sub-reports that are selected, the colours, etc.

 Example 2
 If you select a report and replace a path, all reports in the replaced path will be removed and replaced by the selected report.

 Example 3
 If you select a report and replace a drawing, all the reports associated with all the paths in the drawing (including the New Path Settings and the New Report Settings) will be removed and replaced by the selected report.

 Example 4
 If you select a path and replace a drawing, all the properties of all the paths in the drawing (including the New Path Settings) will be replaced by those of the selected path.

11. If you want to add a report to another path or drawing, highlight the report you want to copy and click **Select**. Now highlight the destination path or drawing and click **Insert**. A copy of the selected report will be inserted into the path or into all paths in the drawing (including the New Path Settings and New Report Settings). As with **Replace** you can continue to click **Insert** to add the report to other paths or drawings.

12. As you will have realised by now, the extra power of the Drawing Explorer comes from the ability to replace or add reports to any or all paths within a drawing. In fact this ability extends beyond the current drawing and you can also replace reports or properties in any of the drawings listed in the explorer.

13. Most of the changes will only appear after you close the Drawing Explorer. If you want to see the effect of a change without closing the explorer click **Redraw**. However, you should note that every redraw adds data to the drawing to allow Undo to work so don’t get carried away using Redraw for every little change or you drawing may become bloated.
Adjusting model settings (not Light Rail version)

Model settings apply from the point at which they are made until the next change of model. Model changes are indicated with an octagon around the relevant target point. See Drawing Settings: Model (not Light Rail version) for more details.

To change the absolute steering limits

1. Select the path that you want to edit.
2. Select Properties from the AutoTrack drop down menu or click the Properties button on the AutoTrack toolbar. The Path Properties dialog will appear.
3. Click the Manoeuvres tab.
4. Highlight the required manoeuvre and click the Edit button. The manoeuvre details dialog will appear.
5. Click the Model tab.
 The steering can be limited in three ways:-
 Select Limit steering to percentage to change the steering capability of your selected vehicle as a factor of the actual maximum steering angle.
 Select Limit steering to angle to set a new maximum steering angle.
 Select Limit steering to radius to specify the maximum steering angle in terms of an equivalent radius. The radius may be to the inside of the inner wheels, the outside of the outer wheels, or the centreline of the steered axle.

To change the absolute articulation limits

1. Select the path that you want to edit.
2. Select Properties from the AutoTrack drop down menu or click the Properties button on the AutoTrack toolbar. The Path Properties dialog will appear.
3. Click the Manoeuvres tab.
4. Highlight the required manoeuvre and click the Edit button. The manoeuvre details dialog will appear.
5. Click the Model tab.
 The articulation angles can be limited in two ways:-
 Select Limit to percentage to change the articulation limits of your selected vehicle as a factor of the actual maximum articulation angle.
 Select Limit to angle to set a new maximum articulation angle.
Adjusting speed settings (not Light Rail version)

Speed settings apply from the point at which they are made until the next change of model. Speed changes are indicated with an octagon around the relevant target point. See Drawing Settings: Speed (not Light Rail version) for more details.

To change the design speed

1. Select the path that you want to edit.
2. Select Properties from the AutoTrack drop down menu or click the Properties button on the AutoTrack toolbar. The Path Properties dialog will appear.
3. Click the Manoeuvres tab.
4. Highlight the required manoeuvre and click the Edit button. The manoeuvre details dialog will appear.
5. Click the Speed tab.
6. You may set different values for the Forwards Design Speed and the Reverse Design Speed.

To change the steering rate limits

1. Select the path that you want to edit.
2. Select Properties from the AutoTrack drop down menu or click the Properties button on the AutoTrack toolbar. The Path Properties dialog will appear.
3. Click the Manoeuvres tab.
4. Highlight the required manoeuvre and click the Edit button. The manoeuvre details dialog will appear.
5. Click the Speed tab.
6. Tick Limit Forward Turn Rate to restrict the rate of application of steering lock when travelling forwards.

Select Based Upon Speed to impose a turn rate that causes the overturn to increase with speed. The turn rate (degrees per unit of distance) will be calculated as follows:-

$$ R = \frac{A}{V \ t} $$

Select Based Upon Lock to Lock Distance to impose a limit that is fixed for all speeds. The turn rate (degrees per unit of distance) will be calculated as follows:-

$$ R = \frac{A}{d} $$

Where:-

- R is Max Turn Rate
- A is Max Steering Angle
- V is Design Speed
- t is Lock to Lock Time
- d is Lock to Lock Distance

Select Based upon Circular Tangential Arc to follow a pure circular arc.
Adjusting the tracking point (not Light Rail version)

Tracking Point settings apply from the point at which they are made until the next change. Tracking Point changes are indicated with an octagon around the relevant target point. See Drawing Settings: Tracking Point (not Light Rail version) for more details.

To change the tracking point

1. Select the path that you want to edit.
2. Select Properties from the AutoTrack drop down menu or click the Properties button on the AutoTrack toolbar. The Path Properties dialog will appear.
3. Click the Manoeuvres tab.
4. Highlight the required manoeuvre and click the Edit button. The manoeuvre details dialog will appear.
5. Click the Tracking Point tab.
6. Select the Front Tracking Point and Rear Tracking Point as required.

Adjusting dynamics settings (not Light Rail version)

Dynamics settings apply from the point at which they are made until the next change. Dynamics changes are indicated with an octagon around the relevant target point. See Drawing Settings: Dynamics (not Light Rail version) for more details.

To change dynamics settings

1. Select the path that you want to edit.
2. Select Properties from the AutoTrack drop down menu or click the Properties button on the AutoTrack toolbar. The Path Properties dialog will appear.
3. Click the Manoeuvres tab.
4. Highlight the required manoeuvre and click the Edit button. The manoeuvre details dialog will appear.
5. Click the Dynamics tab.
6. Tick the Limit for Dynamic Effects box to apply a turning radius limit based upon driver comfort and allowing for side friction and super elevation.
Purging AutoTrack data (Purge AutoTrack dialog) \(^{(5060)}\)

The following procedures will remove ALL AutoTrack data from your drawing, including vehicles and reports. You will be given the option to retain the reports as AutoCAD entities but you should note that they will no longer be editable using AutoTrack.

AutoCAD version

1. Load the drawing that you wish to purge into AutoCAD.
2. Select **Purge AutoTrack** from the AutoTrack, Utilities menu.
3. Alternatively, type **PURGEAUTOTRACK** on the command line.
4. The Purge AutoTrack dialog will appear.

 ![Purge AutoTrack dialog]

5. Check the **Convert AutoTrack reports** box if you wish to leave any AutoTrack reports in your drawing as simple lines.
6. Click **OK**.

MicroStation version

1. Load the drawing that you wish to purge into MicroStation.
2. Select **Purge AutoTrack** from the AutoTrack, Utilities menu.
3. Alternatively, select Key in from the Utilities menu. The Key in dialog will appear. Select **ATRACK** from the first column and **PURGE** from the second. Click **Key in**.
4. The Purge AutoTrack dialog will appear.

 ![Purge AutoTrack dialog]

5. Check the **Convert AutoTrack reports** box if you wish to leave any AutoTrack reports in your drawing as simple lines.
6. Click **OK**.
Vehicle details report

To insert a vehicle details report

1. Select the path whose vehicle details you wish to insert.
2. Select Insert Profile from the AutoTrack drop down menu or click the Insert Profile button on the AutoTrack toolbar.
3. A ghosted picture of the vehicle will appear at the cursor.
4. Move the mouse to position the report and left click to confirm.
5. To edit or disable the report see Viewing the properties of a path (Path Properties dialog).

To move a vehicle details report

1. Select the report that you want to move. Note that the report and its associated path and any other reports will appear selected.
2. Pick the grip at the centre of the front wheels of the first unit and holding the left mouse button down, move the details report as required. Release the mouse button to drop the report.

To remove a vehicle details report

1. Select the report that you want to remove.
2. Select Properties from the AutoTrack drop down menu or click the Properties button on the AutoTrack toolbar.
3. Select the Reports tab.
4. Click the + next to Report 0001 to display the sub-reports and untick the Profile sub-report.
5. If you have more than one report listed (i.e. Report 0001, Report 0002, etc) then you will need to expand each in turn and make sure that the Profile report is disabled in each.
Placing discrete body outlines

To place discrete outlines

You can add discrete outlines using the reports dialogs. However, there is a quick way to add them using the Place Outline command.

1. Select the path on which you wish to add discrete outlines.
2. Select **Place Outline** from the AutoTrack drop down menu or click the **Place Outline** button on the AutoTrack toolbar. The Place Outline dialog will appear.

![Place Outline dialog](image)

3. Tick the discrete elements that you want to add.
4. To place them, move the cursor until they appear at the required location on the path and left click to confirm. You can remove the selected outlines by reselecting the location.

The rule is:-
- If **all** the selected elements are **present** at the chosen location, then when you left click all the selected elements will be removed.
- If **any** of the selected elements are **not present** at the chosen location, then when you left click the missing selected elements will be added.

5. To remove a particular outline from a location tick just this outline type and select the location.
6. To quickly remove all outlines from a location tick all outline types and select the location twice (once to add any non-existent outlines and a second time to remove them all).

Extracting path data

Sometimes there is a need to analyse paths in more detail than is possible in a CAD system. The Extract command allows you to save path data as text files which can then be imported into a spreadsheet program and further examined.

To extract path data

1. Select the path that you wish to extract data from.
Note
You may only extract data for one path at a time.

2. Select **Extract** from the AutoTrack, Path menu. The Save As dialog will appear.

3. Select the file type (comma delimited or tab delimited), name the file and browse to the save location.

4. Click **Save** to confirm.

5. The file will contain the following data in columns:-

 COUNT
 POSITION X
 POSITION Y
 POSITION Z
 DISTANCE
 MAX STEERING ANGLE
 MIN STEERING ANGLE
 ACTUAL STEERING ANGLE
 PERCENTAGE OF MAX STEERING ANGLE
 UNIT 1 ANGLE
 UNIT 2 ANGLE
 ...
 UNIT 1-2 ARTICULATION ANGLE
 ...

Reading extracted data in Excel

The following is presented as a demonstration of how easy it is to obtain graphical plots of AutoTrack path data in Excel 2002. The procedure will vary in other spreadsheet programs.

1. Generate a short path with an articulated vehicle and extract the data as described in the previous section.

2. Open Excel.

3. Open the CSV file containing your extracted path data.

4. Select the columns labelled **Actual Steering Angle** and **Unit 1-2 Articulation Angle** by clicking on the column letter designator.

5. Select **Chart** from the Insert menu. The Chart Wizard will start.

6. Select **Line** graph and click **Finish**. A graph will be inserted showing steering angle and articulation angle varying with distance along the path.

7. The Chart Wizard has further options to allow you to enhance the graph.
Animation

AutoTrack allows you to animate any number of vehicles simultaneously. In addition, you can adjust the start time and pause the animation of each path independently.

AutoCAD users only

Switch off any discrete vehicle position reports before running an animation – otherwise, due to the method used to draw the vehicle in AutoCAD, it will be invisible when it passes this point.

Creating a simple animation (Basic Animation dialog) (8000)

1. Select the path or paths that you wish to animate. If you do not select any paths, AutoTrack will use the previous animation selections. If you have not run an animation this session and have not selected a path, all paths will automatically be selected.

2. Select **Animate** from the AutoTrack drop down menu or click the **Animate** button on the AutoTrack toolbar. The Animation dialog will appear.

3. The slider represents the complete animation and is effectively a time line with the start of the animation at the left hand side and the end of the animation at the right. You will notice how similar the buttons are to those on the Windows Media Player. Just to the left of the Advanced button you will see two figures separated by a backslash. These represent the current animation time and the total animation time.

4. Click the **Play** or **Play Backwards** button to start the animation. The button will stay depressed until either the animation ends or you click it again to stop the animation.

5. You can speed up the animation by clicking the **Fast Forward** button. Each click doubles the speed up to 32x and then it reverts to 0.25x, 0.5x and then normal speed. The current fast forward speed is displayed to the right of the **Record** button.
6. Alternatively, click the **Single Step** or **Single Step Back** buttons to move forwards and backwards along the animation one frame at a time, subject to the current fast forward speed, e.g. if fast forward is set to 4x it moves four times normal speed.

Note
During animation the vehicle is drawn at stored intervals only. Since the "step" referred to is time based (one tenth of a second at normal speed) and not distance based, the vehicle may not move at every step.

7. Finally, you can animate the vehicle using the **slider bar**.

8. Use the **Reset** button to restart the animation.

9. To play the animation indefinitely, depress the **Loop** button.

10. Click the **Record** button to record your animation. Refer to **Recording an AVI file** (8050).

11. Click the **3D button** (AutoCAD only) to view your animation in 3D. Refer to **3D Animations** (AutoCAD only).

12. Click the **Animation Settings** button (AutoCAD only) to change the 3D animation settings. Refer to **Drawing Settings: Animations (not AutoCAD Lite)** (2150).
Advanced options (Advanced Animation dialog) (8005)

1. Select a path and then select Animate from the AutoTrack drop down menu or click the Animate button. The Animation dialog will appear.

![Animation dialog](image1)

2. Click the Advanced button. The Animation dialog advanced options will appear.

![Animation dialog: Advanced options](image2)

3. You should see six horizontal bars. The lower five with the scroll buttons to the right represent potential paths to be animated. Unused bars are completely blank. Paths to be animated are shown as green and contain the name of the vehicle followed by the title of the path. If none of the bars is green then close the dialog, select a path and click Animate again.

4. To edit one of the paths, highlight the relevant bar and click the Edit Path button (or just double click on the bar). The Path Animation dialog will appear (see Path Animation dialog).

5. To add a path, click the Add Path button. The Path Animation dialog will appear (see Path Animation dialog).

6. Select the path that you wish to add from the drop down list, adjust the settings if required (see Path Animation dialog) and click OK. The path will appear in the next available horizontal bar.

Tip

If you want to create a traffic queue add the same path several times each with a greater start delay.

7. To remove a path from the current animation, highlight the path and click the Remove Path button.

8. To add, remove or edit a sound, annotation or CAD
command, double click on the **Global Actions** bar. The Animation Commands dialog will appear (see Animation Commands dialog).

9. To change the current animation, if you have more than one defined, select the required animation from the **Animation Name** drop down box.

10. To add a new animation click the **More** button alongside the Animation Name drop down box. The Animation list will appear (see Animations dialog).
Path Animation dialog (8020)

1. On the Animation dialog highlight one of the path bars and click **Edit** or just double-click on the bar. The Path Animation dialog will appear.

![Path Animation dialog](image)

2. Tick the relevant boxes in the **Show** frame to change the content or the colours of the animation. Note that in AutoCAD only 3D animations are in colour.

 Note

 You will only see tick boxes here for the outline types defined for the vehicle, e.g. you will typically not see a jet exhaust velocity tick box for a car.

3. If you wish to animate only a section of this path you should set the **Hidden start distance** and **Hidden end distance**. The vehicle will not be animated over the hidden length of path. You may have to experiment a little with the distances.

4. If you are animating more than one vehicle you may wish to delay the start of one. To do this, enter a **Start delay** in seconds. Again, you may need to experiment with this.

5. By default the vehicle is shown at the start of the path before the animation starts and at the end after the animation ends. If instead you want the vehicle to appear when it is due to start moving then untick **Show vehicle before start** and / or **Show vehicle after end**.

6. Tick **Starting driver’s eye view** if you want the 3D animation to start with a driver’s eye view from the vehicle on the selected path. Note that you can only animate one driver’s viewpoint at a time so setting this option on one path unsets it on all others.

7. The Intermediate Delays table allows you to pause the vehicle part way along the path. Click **New** to insert a pause at the current slider position. Edit the delay time and / or distance as required.

8. To remove an unwanted intermediate delay highlight it and click **Remove**.

9. Intermediate delays are listed in the order they are added. Click **Sort** to list them in order of distance from the start of the path.
Note
The delays are sorted automatically every time the Path Animation dialog appears.
Animation Commands dialog (8040)

1. On the Animation dialog highlight the Global Actions bar and click **Edit** or just double-click on the Global Actions bar. The Animation Commands dialog will appear.

![Animation Commands dialog](image)

Animation Commands dialog

2. To insert a new command click **New**. The new command will be inserted at the current time in the animation but may be modified.

3. To insert a CAD specific command, for example, to zoom in, set the command **Type** to **CAD command**, click in the next field and enter the command in the edit window. If you want to pause the animation after the command, enter a time in the **Pause** field.

4. To display a comment set **Type** to **Display annotation**, click in the next field and enter the text of the comment in the edit window. Your text will appear in the same window on playback so adjust the size and position of the window accordingly. If you want to pause the animation after the command, enter a time in the **Pause** field.

5. To play a wave file set the **Type** to **Play a sound**, click in the next field and browse to select the wave file. The sound file will play while the animation continues unless you enter a delay time in the **Pause** field.

6. (AutoCAD only) To specify a 3D camera showing the view of the driver of one of the animation paths, set the **Type** to **Driver’s eye camera** and click in the next field to select the animation path.

7. (AutoCAD only) To specify a fixed camera position set the **Type** to **Fixed camera** and click in the next field to select the camera. Note that **(BASE VIEW)** and **(DEFAULT 3D VIEW)** are always defined and represent the view before entering 3D mode (i.e. before clicking the 3D button) and the view immediately after entering 3D mode (i.e. immediately after clicking the 3D button).

8. Initially new commands are added to the end of the list but you can use the **Sort** button to reorder the entries chronologically.
9. To remove a command simply highlight it and click **Remove**.

10. To duplicate an existing command highlight it and click **Copy**.

11. When you click **OK** to confirm the Global Commands bar will update to display icons representing each of your commands.
You can even create more than one animation, maybe to show different aspects of the same manoeuvre.

1. On the Animation dialog, click the **More** button next to the **Animation Name** drop down box.
2. The Animations dialog will appear.

3. At this point you can edit the names of the animations simply by placing the cursor in the relevant field.
4. To add a new animation click the **New** button and edit the name as required.
5. To remove an animation simply highlight it and click **Remove**.
3D Animations (AutoCAD only)

1. To view your animation in 3D click the **3D button**.

2. By default the viewpoint will change and the animation will be displayed in perspective 3D. However, you can change the animation settings to control how and when the viewpoint changes. Refer to Drawing Settings: Animations (not AutoCAD Lite) \(^{(2150)}\) for more information.

3. The vehicles will be displayed as wireframe, hidden line or Gouraud shaded according to your animation settings. The type image can be changed from the animation settings. Refer to Drawing Settings: Animations (not AutoCAD Lite) \(^{(2150)}\) for more information.

Tip
AutoTrack creates the 3D model of any vehicle automatically but you can also define your own block for use in 3D animations. Refer to 3D body shapes for animation to learn how to do this.

4. You can play, single step, fast forward and even record animation just as in 2D.

5. If you deselect the 3D button the view will revert to the view prior to selection and you will be asked if you wish to save the camera position for future use. Saved camera positions may be specified in the Animation Commands dialog \(^{(8040)}\).
Recording an AVI file

Recording an animation can take some time depending upon the speed of your computer and the length and complexity of the animation.

The record option records everything in the selected area so we recommend that you switch off screen savers and do not use other applications whilst recording.

To record an animation

1. Having prepared an animation click the **Record** button in the AutoTrack Animation dialog. The **AVI Options** dialog will appear.

 ![AVI Options dialog](image)

 AVI options dialog

2. Use the **Browse** button to specify the **File Name**. The File Name field is read only. By default AutoTrack will create the AVI file in the same directory as the drawing file. If the drawing file has not been saved then it will create the file in your current directory.

3. **Length in seconds** is the duration of the resulting AVI movie. This is set by default to the real time length which is also shown in the adjacent text.

4. **Frames per second** is set by default to 3. Increasing this value will give you a smoother movie but it will take longer to generate and the file size will be larger. Depending upon the design speed, you may also need to reduce your storage interval. We do not recommend a setting lower than 3 since this results in a jerky playback.

 Tip

 A rule of thumb is that your frame rate should be less than the design speed divided by the storage interval. You may wish to adjust the storage interval in order to allow a higher frame rate.

5. Normally we suggest that the **Capture window** be set to **CAD data window**. This omits the CAD system window, including caption, frame, CAD toolbars and docked controls and edit windows. Bear in mind that for best results the AVI file should be played back at the same size as it is recorded and typical playback monitors may have much smaller screen area than a typical CAD system. The option **Entire CAD window** includes the host CAD system controls and
Full screen includes everything visible on the screen.

6. Click OK. The Video Compression dialog will appear.

7. The Compressor drop down lists all the compression codecs installed on your computer. Select the one you wish to use and click OK to start the AVI writing process, or Cancel to cancel the changes and return to the Animation dialog.

Tip
We recommend the use of the XviD video compression codec which is supplied with AutoTrack. This codec is extremely fast and efficient and produces high quality results of a size that can be emailed.

8. If you do not use the XviD codec there are a number of others supplied as standard with Windows not all of which can be used to create compressed video, some permit playback only. The following codecs are supplied as standard with Windows XP and may be used to create video files:

 Cinepak Codec by Radius
 Microsoft Video 1
 Indeo Video 5.1
 Intel Indeo Video 4.5

9. Some codecs are configurable (the configure options are codec dependent) and in these cases the Configure button and/or the Compression Quality slider will be enabled as soon as you select a codec.

10. Click OK to confirm and generate the AVI file. Do not make changes to the screen at this stage as they will all be recorded.
Viewing and editing vehicles

Although AutoTrack includes a wide range of predefined vehicles there will be cases where you will need a vehicle that is not listed. Between them, the Vehicle Wizard and the Advanced Editor allows you to create or edit almost any vehicle. And if you use your own vehicles regularly you may wish to create your own library of vehicles.

AutoTrack vehicle libraries

AutoTrack is provided with a number of vehicles whose dimensions and characteristics have been pre-defined and which can be used immediately. In the UK version these vehicles are provided in a file called UK_xxx.ATL, where xxx is the most recent version of AutoTrack that can read it, e.g. UK_700.ATL. Such collections of vehicles are referred to as vehicle libraries. Additional vehicle libraries are available for different markets and can even be created by users themselves. However, to ensure that vehicle details do not change arbitrarily, there are restrictions on who can edit them. These restrictions require that users identify themselves if they wish to access a library to make changes. No password is needed simply to use a vehicle contained therein.

Access to vehicle libraries

Access to libraries is restricted using a username / password system such that before a library can be opened for editing they must enter his or her name and password. Only if the user is authorised will they be allowed to open the library. There are three levels of access:-

None
You may list the vehicles but cannot access the details. This is the status of any libraries that have not been purchased.

Read Only
You may use the vehicles but may not change them or add new vehicles. All libraries are initially opened Read Only.

Full Access
You may use, copy, edit, or create new vehicles and add or edit the users.

All Savoy vehicle libraries are Read Only.

Refer to Viewing and editing vehicles for details of how to open vehicle libraries and maintain users.
Access to vehicles in the Pool

Vehicle once in the Pool may be edited unless they have been driven. As soon as a vehicle is used in a path it can no longer be edited; it can however be copied and the copy edited.

Note
If you make a copy of a vehicle in the same library it's name (and those of all it's units) are prefixed with the words 'Copy of ' to distinguish it from the original vehicle.

Compatibility with previous versions

AutoTrack can read vehicle library files back as far as AutoTrack 2, as well as WinTrack 2.x library files. It can also read AutoCAD drawings that contain data generated by earlier versions of AutoTrack and the vehicles contained therein. However, it cannot report upon or manipulate path data generated by earlier versions of either product.

Loading AutoTrack 2.x vehicle libraries

If you want to load v2.x libraries you will need the vehicle files and the corresponding library definition file (extension .DEF). If you do not have this file, then create a text file in the following format:-

{LIBRARY NAME}
{VEHICLE FILE NAME}
{VEHICLE FILE NAME}
{VEHICLE FILE NAME}
etc....

Where {VEHICLE FILE NAME} is the AutoCAD drawing file name (without the extension). So if you want to load an old library called “Any Old Library” consisting of three vehicle files, CAR.DWG, BUS.DWG and TRUCK.DWG then your DEF file should look like this:-

Any Old Library
CAR
BUS
TRUCK

To load an AutoTrack 2.x library

1. Place the DEF file along with the DWG files in the AutoTrack Library subdirectory.
2. Open the library explorer.
3. Right click and select Open Library from the menu.
4. Change the file type to AutoTrack 2.x and browse to find the DEF file.
5. Highlight the file and click Open.
6. The library will appear in the explorer as Imported AutoTrack v2.x vehicle library.
7. Right click and select Save Library As from the menu.
8. Name the file and click Save.
To load an AutoTrack 2.x vehicle

If you want to load just one vehicle or don’t have the DEF file you can load individual AutoTrack 2.x vehicles into AutoTrack.

1. Make a copy of the AutoTrack 2.x vehicle file (the DWG file).
2. Load the AutoTrack 2.x vehicle file into AutoCAD.
3. Open the library explorer.
4. The AutoTrack 2.x vehicle will be listed in the Pool.
5. If you want to save the vehicle for future use then create a new library, drag the vehicle into it and save the library.

AutoTrack can be used alongside AutoTrack v2.x but not v3.x.

Important
Because AutoTrack v2.x made no distinction between front and rear axles AutoTrack assumes that the actual wheelbase is the greatest distance between any two adjacent axles. It is possible that this assumption may be incorrect in a few cases.
Viewing a vehicle in a library or the pool (Library Explorer dialog) (3510)

1. Select Vehicle Library from the AutoTrack menu or click the Vehicle Library button on the AutoTrack toolbar. The Library Explorer will appear. For details of the vehicles see Vehicle Libraries.

2. If the library that you require is not loaded then select Open Library from the File menu in the Library Explorer, browse to find the library and click Open. A new Vehicle Library icon will appear in the Library Explorer with the name of the library beside it.

3. The grouped buttons at the top of the Explorer dialog represent display group options. Click the Group by Vehicle Group button, Group by Vehicle Category button, Group by Vehicle Classification button or Do Not Group button to list the vehicles grouped accordingly when the library is expanded.

4. Click the Hide Library Level button to display all vehicles from all libraries together.

5. Click on the + symbol to expand the library or the pool.

6. Click the + symbol adjacent to the required by group, category or classification if necessary.

7. The arrow on the header bar allows you to list the data in ascending or descending alphanumeric order. Click on the arrow to change the order or click on another column header to sort by another item of data.

8. You can add or remove data from the display by clicking the Insert/Remove Columns button. See Customising the
9. Highlight the required vehicle (indicated by a vehicle symbol dependant upon its type) and select **Edit** (or **View** if the Library is locked) from the **Edit** menu. The **Vehicle Details** dialog will appear.

10. If you wish to edit a Vehicle Group then highlight it and select **Edit** (or **View** if the Library is locked) from the **Edit** menu in the Library Explorer. The **Vehicle Group** dialog will appear.

11. To create a new vehicle or edit or view an existing vehicle using the vehicle wizard click the **Vehicle Wizard** button. For more details refer to The Vehicle Wizard.

12. To print a library, vehicle group or vehicle, select **Print** from the **File** menu or click the **Print** button. For more details refer to Printing library or vehicle details (Print dialog).

13. Click the **Vehicle Diagram** button to display a picture of the current vehicle in a window adjacent to the Library Explorer. See Vehicle Diagram dialog (3570)
Customising the Library Explorer view (Library Explorer Columns dialog) (3515)

By default the Library Explorer lists the vehicles sorted alphabetically by library along with the length, and width of each vehicle. However, you can modify this to suit your preference and requirements.

1. To add or remove columns from the Library Explorer view click the Insert/Remove Columns button. The Library Explorer Columns dialog will appear.

![Library Explorer Columns dialog]

2. The column on the left lists available data items and the column on the right, those that you currently have selected. To add a column to the display, highlight the data item on the left and click the >>> button. To remove a column, highlight the data item on the right and click the <<< button.

3. To change the positions of a column in the dialog, highlight the entry in the right hand column and click Move Up or Move Down as desired.

4. Click Close to return to the Library Explorer.
1. The Vehicle Diagram dialog shows a scale picture of the current vehicle. Initially the picture is centred on the geometric centre of the vehicle but you can change the focus by simply clicking on the picture.

2. The principle dimensions are listed below the diagram.

 Note
 Overall Width follows the general convention and excludes the width of wing mirrors.

3. Click the **Zoom In** button to double the view scale and the **Zoom Out** button to halve the view scale. Note that using either command disables the AutoScale feature (see below).

4. Click the **Zoom Extents** button to restore a full size view of the entire vehicle. Using this command re-enables the AutoScale feature (see below).

5. You can increase or decrease the steering angle shown using the **Increase Steering Angle** button and **Decrease Steering Angle** button respectively.

6. Likewise the articulation angles can be changed with the **Increase Articulation Angles** button and **Decrease Articulation Angles** button respectively.

7. Depress the **AutoScale** button if you want the picture to zoom to extents when you highlight a new vehicle. You may disable this to make it easier to see the relative sizes of the vehicles as you scan through a library. This option is automatically disabled if you zoom in or out manually but is re-enabled if you zoom to extents.

8. Depress the **Show Datum** button to display the reference
9. Depress the **Show Dimensions** button to display dimensions on the diagram.

10. Depress the **Show Loads** button to display load outlines and/or the **Show Other Outlines** button to display any and all other outline types.

11. Depress the **Show Simple Body Outlines** button to hide the detailed outline and display just a silhouette of the vehicle.

12. Depress the **Show Turn Template** button to show 30, 60, 90, 120, 150 & 180 degree turn templates for *front steered* vehicles only. For details of how to print these templates refer to Printing library or vehicle details (Print dialog).

 Note
 You can also create Turn Templates using the Template Generator. See Template Generator.

13. Click the **Show Body** button to display just the bodies, **Show Chassis** button to see just the chassis elements or **Show All** button to see both. The colours are the default colours used for reporting. Click **Show Elevation** to display a side view of the vehicle.
Creating a new library (Library Details dialog) (3520)

1. Select Library, Explore from the AutoTrack menu or click the Vehicle Library button on the AutoTrack toolbar. The Library Explorer will appear.

2. Select New Library from the File menu in the Library. The Library Details dialog will appear.

3. Click the appropriate tab to edit or view the settings.

4. Edit the data as required and click OK to confirm when you are satisfied. Click Cancel to abort all changes and close the dialog.

Library Details: Library

1. Click the Library tab.

2. Give the library a meaningful Name.

3. The Version and Notes fields are provided for additional information and may be used at your discretion.

4. The File Name is read only and will be filled in when the file is saved.

Library Details: Users (3530)

1. Note
 You may only add new users or edit existing users in libraries to which you have full access rights.

2. Click on the Users tab.
3. On a new library all users have full access as indicated by the default entry in the Users table. At least one user in the table must have full access before you may downgrade the default Any User rights.

To add a new user

 ![New User dialog](Image)

 New User

 - **User Name**
 - **Password**
 - **Validate Password**

 Access Level

 - **None** (List Only)
 - **Read Only** (List and Use)
 - **Full Access** (List, Use and Edit)

2. Enter the new **User Name**. Depending upon how you want to restrict access, this may be a specific person or a department name.

3. Enter the **Password** and then repeat it in the **Validate Password** field. This checks that you typed the password correctly. If you do not enter a password the named user will be able to unlock the library without typing a password.

4. Finally set the **Access Level**. We recommend that you add any users that you want to have full access and then downgrade the default Any User to Read Only.

5. Even tighter restrictions can be placed by downgrading Any User to No Access and adding Read Only users as required. However, this may prove problematic in practice.
To edit an existing user (Maintain Users dialog)

1. **Note**
 You may only add new users or edit existing users in libraries to which you have full access rights.

2. On the Library Details dialog highlight the user that you wish to edit and click **Edit**. The Maintain User dialog will appear.

 ![Maintain User dialog](image)

3. Change the **Password** and / or set a new **Access Level** and click **OK** to confirm. If you do not enter a password the named user will be able to unlock the library without typing a password.

4. Click **Cancel** to abort any changes.

 Note
 You cannot delete users; instead you must set their access level to None.

Saving a library

1. Select **Vehicle Library** from the AutoTrack menu or click the **Vehicle Library** button on the AutoTrack toolbar. The Library Explorer will appear.

2. Highlight the library that you want to save, right click and select **Save Library As** from the drop down menu that appears.

3. The Save Library As dialog will appear. Browse to the required storage directory, enter the filename and click **Save**.

4. If the library already has a name then you can use **Save Library**.
Printing library or vehicle details (Print dialog)

1. Select Vehicle Library from the AutoTrack menu or click the Vehicle Library button on the AutoTrack toolbar. The Library Explorer will appear.

2. Highlight the library, vehicle group or vehicle that you want to print and click the Print button at the bottom. The Print Options dialog will appear.

3. Tick Print index to print an index listing the vehicles and Include units if you want the index to include the names of the units.

 Note
 These options are disabled if you selected a vehicle.

4. Tick Print vehicle details to print details for the selected vehicles including a dimensioned scale diagram. Tick Include unit details if you want full details of every unit.

5. Tick Print turn template to print 30, 60, 90, 120, 150 & 180 degree turn templates for the selected vehicles. Select the scale from the drop down list box or let AutoTrack select it for you. Note that the printed output includes a check point to allow you to check for stretching of the paper.

6. Tick Use default printer if you do not want to see the printer settings when you click OK and then click OK to proceed.

7. The Print dialog will appear if you did not opt to use the default printer. Adjust the printer settings if necessary and click OK.
Copying vehicles and units using drag and drop

Vehicles are automatically copied to the Pool when they are driven but you may wish to edit a vehicle before driving it or indeed build your own library of frequently used vehicles.

To copy a vehicle to the pool, select it, drag it over the Pool symbol and drop it. If you wish to copy it to another library you will need full access rights in the destination library. The cursor will change to a no entry symbol to indicate areas where you may not drop the vehicle.

You can also make copies of vehicles within libraries in the same way; in this case the names of the vehicle and its constituent units are prefixed with the words ‘Copy of’, to distinguish them from the originals.

Units may be copied in the same way but can only be copied to another vehicle. Select the unit and drag and drop it over the required vehicle. The unit will be added to the end of the vehicle but may be moved forward by editing the vehicle details.

Entire vehicles can also be added to the end of other vehicles in the same way. In this case all the units that make up the dragged vehicle are added to the end of the target vehicle.

Building vehicles using drag and drop

Using the drag and drop facility new vehicles can be constructed from existing vehicles quite quickly. However, be sure to check that the articulation angles between units are appropriate for your new vehicle.

Using tractors as trailers

If you drop a tractor type unit onto another vehicle it's type AutoTrack will change it's type to Tractor used as trailer. AutoTrack will then ignore the steering limits of the tractor when the vehicle is driven. It will also check that a coupling exists at the rear of the existing vehicle and at the front of the dropped tractor. In most cases you should not need to make any further changes to the vehicle. However, if it was necessary for AutoTrack to add couplings you might need to edit the coupling details.

Towbar type aircraft tugs

To model aircraft being towed with a towbar type tug you will need to change the front axle type to Drawbar. You will also need to set a front coupling at the end of the drawbar.

Towbar-less aircraft tugs

If using the drawbar-less type of tug you should set the articulation limits for the coupling to the maximum nosewheel angle.
Unlocking a library (Unlock Library dialog) (3550)

1. Highlight the library that you want to unlock, right click and select Unlock Library from the drop down menu that appears. If a password has been set for the library, the Unlock Library dialog will appear. Otherwise, the library will be unlocked and you should refer to step 3.

![Unlock Library dialog]

2. Enter your User Name and Password and click OK.

3. You will be granted whatever rights you have within the library. Thus, if you have full access rights within the current library then you will be able to edit vehicles in the unlocked library; if, on the other hand you only have read only rights then you will only be able to drive and copy the vehicles.

Creating a new group

1. Select Vehicle Library from the AutoTrack menu or click the Vehicle Library button on the AutoTrack toolbar. The Library Explorer will appear.

2. Highlight the library that you want to add a group to.

3. Right click and select New, Group from the menu. The Vehicle Group dialog will appear.

4. Edit the details and click OK to confirm.
Vehicle Group dialog (4040)

1. The Vehicle Group dialog lists the vehicle group details.

2. Edit the Name, Category and Classification as required and click OK to confirm.

Viewing a vehicle used on a particular path

1. Select the path and select Properties, Path from the AutoTrack menu or click the Properties button on the AutoTrack toolbar.

2. Click the Vehicle tab. The Vehicle Details dialog will appear.

Viewing or editing an existing vehicle

1. Select Vehicle Library from the AutoTrack menu or click the Vehicle Library button on the AutoTrack toolbar. The Library Explorer will appear.

2. Highlight the vehicle whose details you wish to view or edit. Note that you cannot edit Savoy library vehicles or vehicles in other locked libraries directly but you can view their details or edit a copy.

3. Click the Vehicle Wizard button or right click and select Edit (or View if the vehicle is locked) from the menu that appears. The Vehicle Wizard will appear (see The Vehicle Wizard).

4. To edit a locked vehicle (e.g. a library vehicle) highlight itm right click and select Edit a Copy. AutoTrack will make a copy of the vehicle in the Pool and open it in the Vehicle Wizard.
Creating vehicles

By default new vehicles are created using the Vehicle Wizard. However, you can switch to the advanced editor from any page of the wizard and once the vehicle is created you can even start editing in the advanced editor if you prefer.

To create a new vehicle

1. Select Vehicle Library from the AutoTrack menu or click the Vehicle Library button on the AutoTrack toolbar. The Library Explorer will appear.

2. Make sure that the cursor is not on a vehicle, then right click and select New, Vehicle from the menu that appears or click the Vehicle wizard button.

 Note
 All new vehicles are created in the Pool even if the cursor is over an editable library or vehicle group. This minimises the risk that you corrupt an existing library.

3. The Vehicle Wizard will appear (see The Vehicle Wizard).
The Vehicle Wizard

The Vehicle Wizard allows you to define simple vehicles. The wizard cannot edit the following:-

- More than 7 units
- Non-identical axles
- Different front and rear lock to lock times
- Steering linkages
- Self-steered or retracted axles

If you try to edit a vehicle that has more than 7 units you will be placed in the advanced editor.

On every page of the wizard there is an Advanced button that takes you to the advanced editor. If you wish to edit data that falls into one of the above categories go to the advanced editor then return to the wizard.

Also on every page is a Finish button. This is only active for vehicles that are being edited and not for those being created for the first time.

The wizard displays different screens depending upon the vehicle type.

Some tips for defining trams (Light Rail version only)

All axles on a tram must, by definition, be guided. Each front or rear axle group is reduced to an effective contact point (ECP) and these are used to calculate the movement of the tram. However, it is not always easy to determine whether an axle, or its wheels, are fixed or free to turn, and if you define them incorrectly the tram may be undriveable. There are two rules that must be observed when defining a tram in order to avoid undriveable vehicles.

1. Each tram must have at least one unit with 2 guide points (i.e. a front axle group and a rear axle group) but this need not necessarily be at the end of the tram.

2. There must be only one guide point adjacent to each articulation point. For example, if you define a rear guide point (axle group) on unit 2 then there must not be a front guide point on unit 3; and conversely, if there is no rear guide point on unit 2 then there must be a front guide point on unit 3.

Note that it is implicit in these rules that the first unit must have a front axle and the last unit must have a rear axle.

You should consider the following when defining a new tram:

Which unit is the 2-ECP unit?

Most trams have a clear candidate for the required double ECP unit. However, if it is unclear you should bear in mind that a two axle bogie cannot be regarded as two separate contact points if the bogie articulates with respect to the unit chassis. If the bogie does not articulate with respect to the unit chassis then you can consider the centres of the two axles of the bogie as separate effective contact points.

Where are the pivot points?

The pivot points are where the tram chassis articulates. The tram chassis (and therefore the tram body) is assumed to be rigid between the pivot points.
Vehicle wizard: Name

1. Enter the vehicle **Name**, **Description** and **Source**. Even though the **Description** and **Source** fields are not compulsory we nevertheless recommend that you complete them since they are useful reminders when you come to reuse the vehicle at a later date.

2. Enter the **Vehicle type**. You may select from a variety of steered vehicles, an aircraft or a tram. You may not select a vehicle type Tram if you have not purchased the Light Rail version. Likewise, you may only select a vehicle type Tram if you only have a licence for the Light Rail version. Your selection here affects the data you have to supply. For example, if you select a tram your vehicle will have rail type wheels and you will be asked for details of the pantograph.

3. Enter the **Number of units**.

 Note
 A unit with a drawbar front axle is regarded as a single unit.

4. Click the **Advanced** button to go to the Vehicle Details dialog.

5. Click **Next** to move to the next page.

 Note
 Throughout the wizard, if you have an invalid value you will not be permitted to go to the next page. You can, of course, also move backwards through the wizard using the Back button but note this is not a cancel button and retains any edits that you make on the current page.
Vehicle wizard: Axles

1. Enter the **Number of front axles**. The first unit must have at least a front axle and the last unit must have at least a rear axle.

2. **Drawbar trailers**: If you specify front axles on the trailer of a steered vehicle the wizard assumes you want a drawbar.

3. **Self-steered / retracted axles**: Click the **Advanced** button to use the advanced vehicle editor and tick the **Self-steered** and / or **Retracted** box on the relevant axles.

4. **Steering linkages**: Click the **Advanced** button to use the advanced editor and tick the **Linkage** box.

5. Enter the **Wheels on each axle**. This is the total number of wheels on each axle so if there is only one wheel on each side you should enter 2 in this field. Wheels are generally assumed to be at the ends of the axles except for aircraft main undercarriage wheels which are at specified spacing.

6. **Evenly spaced or specified spacing wheels**: Click the **Advanced** button to use the advanced vehicle editor and select **Evenly spaced** or **Specified spacing** from the wheel position drop down box on each axle.

7. Enter the **Front track width**. All axles are assumed to be identical. Track width must be non-zero.

8. **Non-identical track widths**: Click the **Advanced** button to use the advanced vehicle editor and set the **Outer face wheel track** on each axle.

9. Do the same for the rear axles.

10. Click **Next** to move to the next page.
Vehicle wizard: Wheelbase

1. Enter the **Wheelbase** - the distance between the innermost front and rear axles (or, if there are only axles at one end between the axles and the coupling at the other end). AutoTrack automatically calculates the centroids of the axle groups to calculate the effective wheelbase.

2. **Manual setting of the effective wheelbase**: Click the **Advanced** button and use the advanced editor to set the effective front and / or rear axle offset.

3. If you have more than one front or rear axles then you must enter appropriate values for **Front axle spacing** and **Rear axle spacing**. This is the distance between any two adjacent axles. The wizard assumes that the axles are evenly spaced, i.e. that the distance between all pairs of adjacent axles is the same.

4. **Unevenly spaced axles**: Click the **Advanced** button and use the advanced editor to set the offset of each axle.

5. Click **Next** to move to the next page.
Vehicle wizard: Drawbar

1. Any steered vehicle trailer that has front axles is assumed to be a drawbar trailer.

2. The Length of drawbar is measured from the coupling to the preceding unit to the centre of the axle pivot.

3. The Drawbar articulation angle must be non-zero.

4. Click Next to move to the next page.
Vehicle wizard: Steering (not trams)

1. Most vehicles will have front wheel steering but if your vehicle is one of the exceptions then select Rear Wheels or even Rear Coupling from the Steering drop down box.

2. Enter a value for the Lock to lock time. This is assumed to apply when the vehicle travels forwards or backwards and must be non-zero.

3. **Different lock to lock rates for forwards and reverse:** Click the Advanced button and use the advanced editor.

 Tip

 Lock to lock time is a term that Savoy Computing introduced way back in the eighties. Whilst it is a useful way to describe the steering characteristics of a vehicle it is nevertheless a parameter that is little used in the motoring industry. Far more common is the number of turns of the steering wheel lock to lock. Clearly the two parameters are closely related and it may be useful when defining new vehicles to think in terms of number of turns lock to lock. Of course the time it takes to complete one turn of the wheel may vary between vehicles according to steering wheel size, resistance to turning and other factors.

4. Click Next to move to the next page.
Vehicle wizard: Manoeuvrability

The minimum turning circle radius (MTCR) determines how tight the unit can turn. It is commonly specified on manufacturer's data sheets as either between kerbs or between walls. Otherwise specify the true physical or virtual steering angle.

1. Most sources specify vehicle turning as either kerb to kerb radius or wall to wall radius. However it can also be specified as a maximum wheel angle or as a steering angle. Select the appropriate option and enter either the turning radius in the Minimum Turning Circle Radius field or the angle in the Maximum Angle field. Either must be greater than zero.

2. Click Next to move to the next page.
Vehicle wizard: Couplings

1. The wizard automatically adds a front coupling to all trailers and a rear coupling to all preceding units. The Coupling offset is measured from the innermost rear axle.

2. You may add an additional front coupling to the front unit or a rear coupling to the last unit if you wish.

3. The Maximum articulation angle must be non-zero.

4. Click Next to move to the next page.
Vehicle wizard: Body

1. Enter values for the **Body length** and **Body width**. Both must be greater than zero. You will be warned if the body comprises multiple shapes and given the opportunity to reduce them to a simple bounding rectangle.

2. **To create or edit bodies made up of multiple shapes:** Click the **Advanced** button to use the advanced editor and edit the shapes as necessary.

3. The **Rear Overhang** is measured from the innermost rear axle (or the rear coupling if there is no rear axle) and may be negative if the back of the body is in front of the rear axle.

4. The vehicles are all supplied without wing mirrors defined. If you would like to see the effect of wing mirrors tick **Add wing mirrors**.

Warning
The default wing mirrors will not be ideal for all vehicles and we recommend that you check the location and size if they are critical in your scheme.

5. Finally, select a **Body Shape** from the drop down list.

6. Click **Next** to move to the next page.
Vehicle wizard: Tractor body

1. The Tractor body page allows you to create more realistic looking bodies for articulated vehicle haulers.

2. The **Cab length** is the length of the cab itself.

3. The **Chassis width** is the width of the chassis behind the cab.
Vehicle wizard: Tram body (trams only) (7080)

Vehicle Wizard: Tram body tab

1. By default tram bodies are rectangular. This tab allows you to define more accurate end shapes for your trams.

2. The **Taper width** is amount by which the end of the tram body narrows on each side at the end. For example, if the uniform body width is 2m and the end width is 1m then the taper width is 0.5m.

3. The **Taper length** is the distance from the start of the body width reduction to the end of the tram body.

4. If you specify a negative **End radius** the end of the tram will be concave (i.e. curved inwards instead of outwards). This is used on the trams we provide to represent the inter-car turntable at articulation points.

5. Click **Next** to move to the next page.
Vehicle wizard: Aircraft wings (aircraft only)

Vehicle Wizard: Aircraft Wings tab

1. All except one of the fields on this tab have default values based upon the length or span of the aircraft. We must stress that none of the default values should be regarded as recommended or accurate in any way. Some will be more critical than others and we encourage you to overwrite them with accurate dimensions.

2. The **Wing Tip Leading Edge Offset** is a particularly important dimension and can have a significant effect on the swept envelope.

3. Click **Next** to move to the next page.
Vehicle wizard: Aircraft Tailplane (aircraft only)

1. Again most of the fields on this tab have default values based upon the length or span of the aircraft. Whilst these dimensions are likely to be less critical than those of the wings, nevertheless we must stress that none of the default values should be regarded as recommended or accurate in any way and we encourage you to overwrite them with accurate dimensions.

2. Click **Next** to move to the next page.
Vehicle wizard: Aircraft Fuselage (aircraft only)

Vehicle Wizard: Aircraft Fuselage tab

1. The dimensions on this screen are unlikely to be critical. Nevertheless, it is still worth entering accurate data.

2. Click **Next** to move to the next page.
Vehicle wizard: Pantograph (trams only) (7120)

Vehicle Wizard: Pantograph tab

1. If the current tram unit has a pantograph pickup tick the box.
2. The **Pickup offset from front** is measured from the front of the tram body.
3. Click **Next** to move to the next page.
Vehicle wizard: Finish

Vehicle Wizard: Finish tab

1. The Finish page allows you to print the details of your new vehicle. When you are ready click **Finish** to add the vehicle to the library or pool.
The Advanced Editor

The advanced editor has fewer restrictions than the wizard and allows you to define details that may not be possible using the wizard. However, the wizard preserves advanced settings defined using the advanced editor and consequently you can safely switch between editors as the need arises.

Vehicle Details dialog (4050)

The Vehicle Details dialog gives an overview of the complete vehicle, and lists the units that it comprises.

1. The Name, Type, Category and Classification of the selected vehicle appear at the top of the dialog. Beneath that the units that comprise the vehicle are listed with the front unit at the top. Vehicle Category and Classification are merely sort criteria used in the Library Explorer and have no bearing on how the vehicle behaves. However, you will not be able to create vehicles of type tram unless you are licensed to use the AutoTram module; likewise you will not be able to create any of the various steered vehicle types unless you are licensed to use AutoTrack.

2. Click the button next to the Name field to enter Source, Description and Notes.

3. Select a unit and click the View or, if you have appropriate rights, the Edit button to check the details of a specific unit. The Unit Details dialog will appear.

4. Click New to add a Unit to the vehicle. This will display a blank unit details dialog for you to create a completely new unit (see Unit Details dialog). If you want to add an existing unit to the vehicle, then drag it onto the vehicle in the Library Explorer dialog.

5. Select a unit and click Remove to remove it from the vehicle.
6. You can reorder units using the **Move Up** button. Select a unit and click **Move Up**. The selected unit will be moved up one place.

7. The only editable column in the lower grid is **Max. Artic.**, the maximum articulation angle. This value is used in preference to those defined in the coupling details if it is lower.

8. The unit names can only be edited in the Unit Details dialog.
The Unit Details dialog shows the detailed dimensions and parameters of individual units. When defining units we recommend that wherever possible you enter the actual dimensions and allow AutoTrack to calculate the effective dimensions.

1. Click on the appropriate tab to view or edit details.

2. Enter values in the fields provided and click **OK** to confirm and close the dialog.

3. Click **Apply** if you wish to confirm the changes but not close the dialog. Click **Cancel** to abort all changes since the last time you clicked **Apply**.
Unit Details: Unit

1. Click on the **Unit** tab.

2. **Name** may be anything but make sure that similar vehicles with different drive characteristics are clearly identified to prevent incorrect use. Click the button next to the **Name** field to enter **Source**, **Description** and **Notes**.

3. **Unit Type** may be **Tractor**, **Trailer**, **Tractor Used as Trailer**, **Towbar**, **Suspended Unit** or **Tram / Guided Unit**:
 - **Tractors** are always the driven (and steered) unit and must therefore have at least a front axle and steering characteristics.
 - **Trailers** have no steering parameters and may front and rear or just rear axle groups.
 - Setting **Tractor Used as Trailer** forces AutoTrack to ignore the steering criteria for this unit and treat the remaining data as if it were a trailer.
 - **Suspension Units** have no axles and therefore no steering capability.
 - A **Tram / Guided Unit** is assumed to be guided by rails or similar and therefore has no steering capability. The unit may have front and / or rear axles or no axles but any axles must be guided.
 - A **Towbar** is essentially the same as a suspended unit and has neither front nor rear axles and no steering.

 As you edit the Type the relevant data tabs will appear and disappear.

4. Vehicle **Category** and **Classification** are merely sort criteria used in the Library Explorer and have no bearing to how the unit behaves.

5. The **Datum** is the reference point for all dimensions on the unit. It may be set to the front most or rearmost point on the body, the front or rear primary axle, or the front or rear coupling.

6. If your unit has a front axle tick **Front Axle**. Likewise **Rear Axle**.

7. The distance from the datum to the **Innermost Front Axle** and **Innermost Rear Axle** must be specified. Obviously if the selected datum is one or other of these values then the appropriate dimension will be zero. The values are directional as indicated by the text that follows the field and the direction in which the unit is facing. You will not be able to edit the front axle offset if you have a drawbar front axle and a front coupling datum.

 Note
 *The difference between the **Innermost Front Axle** offset and the **Innermost Rear Axle** offset is the **Actual Wheelbase** referred to in WinTrack v2.x.*

8. Both front and rear axle groups are equivalenced to single effective axles. The position of these effective axles is dependent upon a number of factors including the axle and steering geometry and the tyre dimensions. It is the effective
axle positions that determine how the vehicle moves. By default AutoTrack calculates the positions of the effective axles for you but in some cases it is useful to specify the position manually.

Note
Since the effective axle positions determine how the unit turns so we recommend that you allow AutoTrack to calculate the value in most cases.

9. If you wish to set the Effective Front Axle Offset or Effective Rear Axle Offset manually then untick the relevant Use Calculated Value and enter the offset using the same direction convention as the Innermost Front Axle. bearing in mind the direction drop down box.

Note
You cannot manually specify an effective axle offset to an axle that is linked.
Unit Details: Front Axles / Rear Axles

1. Click on the Front Axles tab (or Rear Axles tab).

![Unit Details dialog: Front Axles tab]

2. Select the Axle group type from the drop down list. If the axle group is steered then it is probably uses the Ackerman steering principle whereby each wheel turns a different angle consistent with travelling along concentric arcs (see the chapter on Theory). Trailers may have drawbar front axles. Rear axles for most vehicles are fixed; those that steer must be linked to either the front axle (if there is one) or the front coupling.

3. Tick Guided if the axle is guided by rails or kerbs.

4. Tick Rail wheels if the wheels on these axles have rail wheels instead of tyred wheels.

5. Tick All axles identical if all the axles have the same basic dimensions. When you tick this box the values for all axles will be set to same as the currently displayed axle (i.e. not necessarily axle 1) and the axles will be set to evenly spaced at the current Uniform axle spacing. Multiple tabs will be reduced to a single tab with text similar to Axle 1 to 3 (Identical).

6. Tick Linked steering if this axle group turns but the turn angle is linked to the turn angle of another axle group or coupling. A rear axle group is automatically linked to the front axle group, if one exists, or the front coupling articulation angle, if not. A front axle group is similarly automatically linked to either the rear axle group or coupling. A unit cannot have both front and rear axle groups linked. The primary axle group cannot have linked steering and neither can a fixed axle group.

Warning

If you create a linked Ackerman multi-axle group then even if
you set a linkage ratio of zero some of the wheels will still turn reflecting the Ackerman axle type.

7. Click the **Linkage** button to enter details of the steering linkage ratios. See Unit Details: Axle Groups: Linkage Details (4090) below.

8. Tick **Uniform axle spacing** if all the axles in the group are the same distance apart and enter a value in the field. Identical axles are deemed to be evenly spaced.

Note

Although a default value is provided for the axle spacing we strongly recommend that you obtain an accurate figure and overwrite this.

9. Tick **Wheel angle limited** if you know the maximum angle that any wheel in the group can turn and enter the angle in the field provided. Note that if the axle group is of the Ackerman type all wheels will turn by different amounts; in this case you should enter the greatest angle of any wheel in the group.

Note

You can only limit the turning of linked or self-steered axles in this way. The primary steering limit may be adjusted on the Steering Details tab. See Unit Details: Steering (4150).

Warning

When the limiting wheel angle is reached the steering is recalculated based upon the value of the controlling or primary steering angle and the limiting angle. This tends to force the cut-in point towards the limited axle.

10. If you are defining a drawbar axle group, then enter the **Drawbar length**. Note that the coupling (if any) at the end of the drawbar must be specified in the Couplings tab.

11. Also, if defining a drawbar, enter the **Maximum articulation angle** which is the angle between the drawbar and the unit to which it is permanently attached.

12. If you are defining a nosewheel, bogie or drawbar axle group then you must specify the **Axle group pivot offset**. This is the distance in front of axle 1 on front axle groups and the distance behind axle 1 on rear axle groups.

13. On units with tyred wheels the **Outer face wheel track** is measured over the outer faces of the outermost tyres on an axle. It is most important that this value is correct if you are specifying steering turn angle by kerb to kerb turning circle radius. Note that on **Pendel axles** this dimension is measured to the outer faces of each sub-axle.

On units with rail wheels the **Rail gauge** is measured between the faces of the wheels in contact with the inner faces of the rails.

14. Certain vehicles can have axles lifted from road contact when unloaded. Tick **Retracted** to specify an axle of this type. Note that you cannot define all axles in a group as retracted so by definition you cannot change this setting if the group only consists of one axle or if all axles are identical.
The only exception to this rule is the primary steered axles of a tractor used as a trailer which may be retracted.

15. The Subaxle spacing applies only to Pendel axles and is the distance between the pivot points of each subaxle. You can specify irregular spacings by entering values as "1.5, 2.1, 1.5". In this case the first spacing is the distance between the outermost subaxle and the adjacent subaxle, the second value is the distance between the next two subaxles and so on. The last value is assumed to apply to any remaining subaxle spacings. The row of subaxles is assumed to be symmetrical so you only need to specify spacings for the sub-axles on one side.

16. If the axles are not equally spaced then tick Offset from previous axle, and enter a value in the field. Note that axle 1 has no offset.

17. On non-turning axle groups (e.g. fixed, undercarriage) you may tick Self steered to allow selected wheels to rotate freely about their vertical axis (much like the wheels of a shopping trolley) on the Ackerman principle. This will affect the AutoTrack calculation of effective axle offset on multi-axle groups. Select the directions in which the self-steering applies.

It is widely assumed that self-steered axles have no effect on the position of the effective axle but if you consider that they have some effect you may wish to specify the effect of the axle compared to a fixed axle with the same wheels by specifying a Self steered friction factor. A zero friction factor means the self-steered axle has no effect on the effective axle position. A value of 100% means the self-steered axle has the same effect as a fixed axle. In addition, the wheel angle will be adjusted by the same friction factor.

18. On axle groups that include Ackerman steered wheels you may tick Fixed to prevent selected wheels from turning. Select the directions in which the axle is fixed.

Note
Currently axles fixed in this way are only drawn fixed and are still considered as turning for the purposes of calculating the effective axle position.

19. Total wheels per axle / subaxle can be any positive value, odd or even. If you specify an odd value the odd wheel will be drawn at the centre irrespective of the wheel placement specified in the next field.

20. Wheel placement defines how the wheels are positioned along the axle. It can be set to At Ends of Axle, Evenly Spaced or Specified Spacing. If you select Specified Spacing you must provide the Wheel spacing, the distance between centres of the wheels. The default is twice the wheel width.

21. If you are defining an Ackerman axle with wheels located at the ends of the axles then you have the option to set a Stub axle length. The stub axle length is the distance from the centre of the wheel group to the pivot at the opposite end of the stub axle.
22. On units with tyred wheels the **Tyre diameter** is measured to the tread surface for units with tyres. Note that this does not affect path prediction where all axles are identical but may affect the calculated effective axle offset when the track widths of each axle in a group varies and therefore affect the resultant path.

On units with rail wheels the **Wheel diameter** is measured to the surface in contact with the rail.

A default value is provided but if you know the actual value then overwrite the default.

23. On units with tyred wheels the **Tyre width** is measured at the contact point. Note that this does not affect path prediction where all axles are identical but may affect the calculated effective axle offset when the track widths of each axle in a group varies and therefore affect the resultant path.

On units with rail wheels the **Wheel width** is measured to the outer faces of the wheel.

A default value is provided but if you know the actual value then overwrite the default.

24. Click the **New** button to add an axle after the last one currently defined, i.e. if you have 3 axles defined the new axle will be axle 4. The new axle will be initialised with the same values as the current axle.

25. Click the **Insert** button to insert an axle at the current location, i.e. if you are displaying axle two of three the inserted axle will be numbered 2. The inserted axle will be initialised with the same values as the current axle.

26. Click the **Remove** button to remove the currently displayed axle from the group. Note that you cannot remove axle 1, instead you must untick Front Axles or Rear Axles on the Unit tab to remove the axle group completely.
Unit Details: Axle Groups: Linkage Details

1. Linkage rules can apply in both directions at all speeds or you can define rules that only apply in one or other direction from certain speeds and/or angles.

Unit Details: Axle Groups: Linkage Details dialog

2. The top section of the Linkage Details dialog deals with angular linkages only.

3. Select the **Scope** of the angular linkage from the drop down list. You may select Forwards Only, Reverse Only or Forwards & Reverse.

4. Enter the **Angle** from which the linkage applies. Note that the first entry in the table always has a starting angle of 0.0, which cannot be edited. If you have an angular linkage that starts from a greater angle click **New** to add a new linkage.

5. The **Basis** determines whether a factor is applied directly to the angles, i.e. the linked angle is directly proportional to the angle of the item to which it is linked; or to the tangents of the angles, i.e. the tangent of the linked angle is proportional to tangent of the angle of the item to which it is linked; or whether the linkage is defined as an effective offset distance. Select **Angles**, **Tangents** or **Offset** as appropriate.

6. Linkages by **Angles** or **Tangents**

 Enter the linkage **Factor**, which is the amount by which the linked wheels turn expressed as a proportion of the angle of the item to which it is linked. Note that the factor can be applied to either the tangents of the angles or the angles themselves (see Basis below). The linkage factor is assumed to vary linearly to the next specified angle. The linkage factor does not increase beyond that assigned to the highest angle listed.

 Note

 If the linkage factor changes in steps rather than linearly you create two entries at each new angle, the first with the factor set to the value for the previous angle and the second with the factor set to the new value.

7. Linkages by effective wheelbase or **EWB**.

 Enter the **EWB**, which is the distance from the effective steered axle to the effective fixed axle. The EWB is assumed to vary linearly to the next specified angle. The EWB does not increase beyond that assigned to the highest angle listed.
Note
If the EWB changes in steps rather than linearly you create two entries at each new angle, the first with the EWB set to the value for the previous angle and the second with the offset set to the new value.

8. If there are speed dependent linkages tick These linkages are also speed dependent. The dialog will expand to reveal another grid.

9. Select the Scope of the speed related linkage from the drop down list. You may select Forwards Only, Reverse Only or Forwards & Reverse.

10. Enter the Speed from which the linkage applies. Note that the first entry in the table always has a starting speed of 0.0, which cannot be edited. If you have a speed linkage that starts from a higher speed click New to add a new linkage.

11. Enter the speed linkage Factor, which is the amount by which the linked wheels turn expressed as a proportion of the angle of the item to which it is linked. The linkage factor is assumed to vary linearly to the next specified speed. The linkage factor does not increase beyond that assigned to the highest speed listed. If you have a speed linkage that starts from a greater speed click New to add a new speed linkage.

Note
If the linkage factor changes in steps rather than linearly you create two entries at each new speed, the first with the factor set to the value for the previous speed and the second with the factor set to the new value.
Unit Details: Steering

1. Click on the **Steering** tab.

 ![Unit Details dialog: Steering tab](image)

2. The **Primary steering** is determined by the design of rest of the unit. AutoTrack assumes that the primary steering is applied at the steerable axle or coupling that is not linked to any other. If there are no such axles or couplings (or more then one) you will be warned. Thus if the unit has steering on both front and rear wheels then one of the axles must be specified as linked.

3. The lock to lock time is the time taken to turn the primary steering from full left lock to full right lock (or vice versa). You may specify a different value for **Lock to lock time forwards** and **Lock to lock time reverse**. Note that this value can be over-ridden by disabling the steering rate limits in the Model.

 Tip

 Lock to lock time is a term that Savoy Computing introduced way back in the eighties. Whilst it is a useful way to describe the steering characteristics of a vehicle it is nevertheless a parameter that is little used in the motoring industry. Far more common is the number of turns of the steering wheel lock to lock. Clearly the two parameters are closely related and it may be useful when defining new vehicles to think in terms of number of turns lock to lock. Of course the time it takes to complete one turn of the wheel may vary between vehicles according to steering wheel size, resistance to turning and other factors.

4. The **Maximum steering angle** is the angle of an imaginary wheel at the centre of the steering (axle or coupling). If you do not have this information to hand AutoTrack is able to calculate it for you in one of three ways. Tick **Use**
calculated value if you want AutoTrack to calculate the maximum steering angle.

5. If you know the relevant radius then we recommend that you select either Kerb to kerb radius or Wall to wall radius as the basis for the maximum steering angle calculation.

If you selected Kerb to kerb radius you should now specify whether the radius is based upon All Axles or just Active Axles. The latter ignores retracted axles.

If you selected Wall to wall radius then you should specify whether the radius is based upon Body Only or Body and Loads. Usually a wall to wall radius is measured to the outer limits of the vehicle body excluding any loads being carried. If this is the case select Body Only.

Finally, if you have speed related linkages defined then you will also need to specify the speed at which the radius applies. If you do not have any speed related linkages defined then leave the speed at zero.

6. If you do not know either the kerb to kerb or wall to wall radius then you should use the Maximum wheel angle or Maximum artic angle. The Maximum Wheel Angle is the maximum angle of any wheel on the primary axle group (front or rear). The Maximum Artic. Angle is the maximum coupling articulation in the case of vehicles with steerable couplings. The value is taken from the Wheel angle limited to box on the appropriate axle group tab or from the Maximum horizontal angle box on the coupling tab.

Warning
The Maximum wheel angle represents the maximum angle of any wheel in the axle group, unlike previous versions of AutoTrack in which it referred to an imaginary centre line wheel. The imaginary centre line wheel angle is now referred to as Maximum Steering Angle.

7. The Longitudinal offset is the distance of the driver (specifically his eye) in front of axle 1.

8. The Lateral offset is the distance of the driver’s eye from the centreline of the vehicle looking towards the front of the vehicle. You may specify a negative lateral offset if the driving convention requires it. Refer to Drawing Settings: Scale.

9. The Vertical offset is the height of the driver’s eye above ground level and is used in driver’s eye viewpoint animations.

10. The position of the driver on the left or right is defined for the driving convention currently set. If you want the driver to be relocated for the opposite driving convention then tick Move the driver/pilot to the … when the convention is to drive on the …
Unit Details: Body / Outlines

1. Click on the Body / Outlines tab.

2. Outlines are categorised into different types, body, load etc. This allows you to switch the different types of outline on or off later when analysing the swept path. Furthermore, within each type of outline you can define different groups of shapes. So, for example, you might define a low loader trailer with two shapes in the Load Outline group, one representing an excavator (called Excavator) and another representing a dumper truck (called Dumper). Like the outline groups these can be independently switched on and off later.

3. To add a new outline, highlight the type, e.g. Body outline, Load outline etc, or group, and click the New button. A blank shape will be added either in a new default group or in the group you selected.

4. The top window contains an expanding tree view of the defined outline types. Each may contain zero or more groups of shapes. Two groups, Body outlines and Load outlines are special types that are referenced elsewhere in the unit details. Body outlines typically contains at least one group of shapes that defines the shape of the body of the unit. The Load outline may contain a shape group that represents a load.

5. The lower frame lists the details of the currently selected entry in the tree view. As you move the cursor over different objects in the tree the details change.

6. To add a new body outline highlight the Body outline type and click the New button. A new shape group containing a single shape will appear. Select the required shape Type from the drop down list box (Rectangle, Circle, Arc, Arc Segment, Line, Tram body, Tractor body, Aircraft body, Jet Exhaust Contour, Wing Mirror or Text) and enter the requested values.

To enter data for Line shapes click the Vertices button.
Vertices dialog will appear. See below.

To enter data for Tram body shapes click the Tram Body button. The Tram dialog will appear. See below.

To enter data for Tractor body shapes click the Tractor Body button. The Tractor dialog will appear. See below.

To enter data for Aircraft body shapes click the Aircraft Body button. The Aircraft dialog will appear. See below.

To enter data for Jet Blast contour shapes click the Jet Blast Contour button. The Jet Blast Contour dialog will appear. See below.

7. Enter the X Offset and Y Offset to position the shape as required. Note that certain shapes have a Mirror about the X-axis check box. Use this to copy an asymmetrically placed shape about the X-axis.

8. You can if you wish import shape outlines from your drawing rather than defining them from scratch. Highlight the outline type that you wish to add and click the Import button. The Import dialog will appear. See below.

9. To remove a single shape or group of shapes highlight it in the tree view and then click the Remove button. You cannot remove outline types (i.e. Body outline etc) from the tree view.

10. New shape groups or shapes are given default names. To change the name of a shape or shape group simply highlight it and then click once.

11. Load outline shapes represent objects that are not part of the base vehicle. The good example is an excavator being carried on a low loader. Shapes of this type may optionally be excluded from calculations of steering angle that are based upon wall to wall turning circle.

12. Groups of shapes may be offset from the unit datum and individual shapes may be offset from the shape group datum. This allows you to move a group of shapes without having to move each individual shape.
Height and ground clearance

If you intend to perform a vertical clearance path analysis for the vehicle then you will need to either enter a custom side elevation or set the overall height and ground clearance to use the default vehicle type elevation adjusted for these values. You may enter a side elevation just like any other outline (see above). To use the default outline...

1. Highlight Body outline (side elevation).

![Unit Details dialog: Body / Outlines tab](image)

2. Enter the **Maximum height** and **Minimum ground clearance** in the Details section at the bottom.

3. Click **OK** to confirm. The side-elevation will 'stretch' such that the highest and lowest points correspond to the values you provide.

Warning

If you do not enter these values defaults will be used. It is unlikely that the default values will be precisely correct so to obtain useful results you MUST enter these values unless you define a custom side elevation.
3D body shapes for animation

If you are running a system capable of 3D animation, you will need a 3D body shape for your vehicle. By default AutoTrack automatically creates a 3D body shape from the information supplied but you can define a more detailed shape if you wish.

The 3D body should be defined in AutoCAD as a block with the origin at the centre of the front coupling (or the centre of the rearmost front axle if there is no front coupling). The shape should be oriented with the spine of the vehicle running along the x-axis (increasing towards the back of the vehicle), the width on the y-axis and the height on the z-axis (increasing with height). To use the new shape...

1. Ensure that the AutoCAD drawing containing the block is placed in the Library directory.
2. Highlight Body outline (side elevation).
3. Select the drawing from the drop down list.
4. Click OK to confirm.

Note

Only the name of the 3D block is stored in the drawing. This means that if you send a vehicle to a third party, either in the form of a library or as a drawing, you will need to send them the custom block as well. If AutoTrack cannot find a named block it will use the Auto-Create option.
Editing vertices (Vertices dialog)

1. The vertices are listed in order. You cannot edit the vertex number.

 ![Vertices dialog](image)

 Vertices dialog

2. Click **New** to add a new vertex at the end of the list.
3. Click **Insert** to insert a new vertex at the current position.
4. Click **Remove** to remove a vertex from the list.
Editing Tractor bodies (Tractor body dialog)

1. The Tractor body shape is defined with four dimensions.

![Tractor Body dialog](image)

2. The **Length** and **Width** define the overall length and width respectively of the body.

3. The **Cab length** is the length of the cab itself and defaults to half the overall body length.

4. The **Chassis width** is the width of the chassis behind the cab and defaults to one third of the overall body width.
Editing Tram bodies (Tram Body dialog)

1. The Tram Body shape is defined with eight dimensions.

 ![Tram Body dialog](image)

- **Overall body length** and **Overall body width** define the basic rectangular body.

- **Front taper width** is amount by which the front of the tram body narrows *on each side* at the end. For example, if the uniform body width is 2m and the end width is 1m then the taper width is 0.5m. Likewise **Rear taper width**.

- **Front taper length** is the distance from the start of the body width reduction to the end of the tram body. Likewise, **Rear taper length**.

- **Front end radius** defines a curve of the front of the body. If the front end radius is less than half the end width (defined as the overall body width minus twice the front taper width) a semi-circle will be added. If you specify a negative front end radius the front of the tram will be concave (i.e. curved inwards instead of outwards). This is used on the trams we provide to represent the inter-car turntable at articulation points. Likewise, **Rear end radius**.
Editing Aircraft bodies (Aircraft Body dialog)

1. The Aircraft Body shape is defined with 16 dimensions. Many of these default to a reasonable value if the field is zero. Default values are shown in red with an asterisk beside the field. Obviously, some dimensions will be more critical than others but you are strongly advised to replace all of the default values with accurate data.

2. The **Fuselage length** and **Wing span** must be provided. As soon as these values are entered a default outline will appear.

3. The **Wing tip leading edge offset** is a critical value since it locates the point that is often critical in determining the swept envelope.

4. Enter as many values as you can.
Editing Jet Blast contours (Jet Blast Contour dialog)

1. The jet blast contour shape is defined with up to 9 dimensions.

2. The **Length** is the length of the contour from root to tip.

3. The **Root Width** is the width of the contour at the end closest to the engine.

4. At least one pair of **Width at** fields must be provided. Default values are provided for these. Up to two further pairs may optionally be added to adjust the shape of the curve.

5. The **Rotation** is the angle of the contour from the X-axis.

6. Optionally text may be assigned to the contour.
Importing outlines (Import Outlines dialog) (not MicroStation version)

1. You may either import a shape as a text file or as a graphic entity from the current drawing.

![Import Outline dialog](image)

2. Select **Import block** to import a graphic from the current drawing and then either select the block name from the drop down list or use the **Pick** button to select a polyline using the mouse.

3. If you use this feature you will need to ensure that the shape is correctly aligned with respect to the axis system and reference datum of the parent unit. Thus, assuming zero offset, your shape should be oriented facing to the left with the origin at the reference datum (usually the primary front axle or front coupling).

4. If you use this feature to define side elevations note that the reference datum is assumed to be the road surface. Thus, again assuming zero offset, your shape should be defined with the lower edge at the height of the required ground clearance.

5. Select **Import file** to import an AutoCAD drawing file (see next section), or an ASCII text file (comma or space delimited) and click the **Browse** button. When the Open File dialog appears, select the appropriate file type and browse to find your file. Click **Open** to get the data into the table.

Note

A delimited format should be simply a list of coordinate pairs either comma (CSV) or space delimited (TXT), e.g.:-

\[X1, Y1 \]
\[X2, Y2 \]

etc…
Importing AutoCAD drawing files

Note
This feature is not available in the MicroStation version.

1. The facility to import outline data from drawing file allows you to import data for both plan view and side elevation (and any other outline types) in one operation. However, to ensure that the right elements go in the right outlines you must follow a layering convention.

2. The layer naming convention is as follows:

 \{Outline Type\}\{Shape Group\}

where \{Outline Type\} is one of the following:

- BODYOUTLINEPLAN
- BODYDETAILPLAN
- LOADOUTLINEPLAN
- PANTOGRAPH
- JETEXHAUSTTEMPERATURE (or JETTEMP)
- JETEXHAUSTVELOCITY (or JETVEL)
- FIELDOPVISION
- NOISE
- SERVICING
- BODYOUTLINESIDE
- USERDEFINED1
- USERDEFINED2
- USERDEFINED3

and \{Shape Group\} is entirely at your discretion.

3. AutoTrack strips off any outline type prefixes that it recognises from the list above and uses the remainder as the name of the shape group. If there is no text remaining after the prefix has been removed AutoTrack supplies a default name for the shape group.

 Example 1
 All entities on layer BODYOUTLINESIDEWINGMIRRORS in the imported drawing will be placed in the outline type \textbf{Body outline (side)} in a shape group called \textbf{WingMirrors}.

 Example 2
 All entities on layer BODYOUTLINEPLAN in the imported drawing will be placed in the outline type \textbf{Body outline (plan)} in a default shape group called \textbf{Body}.

4. Draw a circle on layer UxORIGINPLAN and UxORIGINSIDE to specify an offset unit origin in plan and side views respectively where \(x\) represents the unit number. Thus the centre of a circle drawn on layer U1ORIGINSIDE is assumed to be the origin of the side view of unit 1.
Unit Details: Couplings

1. Click on the Couplings tab.

2. Tick **Front Coupling** and / or **Rear Coupling** to include front and rear couplings respectively.

3. The **Type** of coupling dictates what other units can be connected to this unit, i.e. the coupling types must match. The exception is that any coupling type can be linked to a generic coupling. Coupling type **Active Steerable Coupling** allows users to model vehicles with no conventional steered wheels but instead a articulation point whose angle is controlled by the driver, e.g. by hydraulic rams. A unit may only have one coupling of this type and it is always the primary steering.

4. The **Capability** of the coupling specifies whether it can tow other units, be towed or both.

5. The position of the coupling is defined by the **Coupling offset** which is measured relative to the datum point.

6. The **Coupling height** is used for vertical clearance analysis and defaults to a proportion of the wheel diameter. Enter an accurate figure if you have one.

7. The **Maximum horizontal angle** is the maximum possible articulation angle between the two connected units in the horizontal plane. Note that when this unit is coupled to another the articulation angle specified in the vehicle details form takes precedence if it is lower. Thus, a vehicle uses the lower of the articulation angle defined in the vehicle details and these values.

8. The **Maximum vertical angle** is the maximum possible articulation angle between the two connected units in the vertical plane and is used for vertical clearance analysis.

9. Tick **Assume coupling height matches rear coupling on previous unit** if the front coupling is able to adjust to suit the height of the coupling on the towing unit.
Parking layout tools (full version only)

The built-in parking layout tools will allow you to set out car parks and other vehicle parking areas very quickly.

AutoTrack Parking standards

All parking layouts are created in accordance with defined rules or standards.

A number of standards are provided with the program and these may be used as the basis for your own company standards. The standards are grouped by nationality so, for example, the UK parking standards are held within a file called UK_xxx.APS, where xxx is the most recent version of AutoTrack that can read it, e.g. UK_700.APS. Additional parking standards are available for different markets and can even be created by users themselves. However, to ensure that the details do not change arbitrarily, there are restrictions on who can edit them. These restrictions require that users identify themselves if they wish to access a standard to make changes. No password is needed simply to use a standard.

Access to parking standards

Access to parking standards is restricted using a username / password system such that before a standard file can be opened for editing they must enter his or her name and password. Only if the user is authorised will they be allowed to open the standard file. There are three levels of access:

None
You may list the standards but cannot access the details. This is the status of any standards that have not been purchased.

Read Only
You may use the standard file but may not change them or add new standards. All standard files are initially opened Read Only.

Full Access
You may use, copy, edit, or create new standards and add or edit the users.

All Savoy parking standards are Read Only.
Refer to Viewing a standard in a parking standard file or the pool (Parking Standard Explorer dialog) and Creating a new parking standard file (Parking Standard File dialog) for details of how to open standards files and maintain users.

Access to parking standards in the Pool

Unlike vehicles, parking standards, once in the Pool, may be edited even if they have been used.

Note

If you make a copy of a standard in the same standard file its name is prefixed with the words ‘Copy of’ to distinguish it from the original standard.

Viewing a standard in a parking standard file or the pool (Parking Standard Explorer dialog)

1. Select **Parking Standard Explorer** from the AutoTrack, Parking Layout menu or click the **Parking Standard Explorer** button on the AutoTrack Parking Layout toolbar. The Parking Standard Explorer will appear. For details of the standards see Viewing or editing parking standards.

2. If the standard that you require is not loaded then select **Open Parking Standard** from the **File** menu in the Parking Standards Explorer, browse to find the standards file and click **Open**. A new Parking Standards File icon will appear in the Parking Standards Explorer with the name of the standard file beside it.

3. Click on the + symbol to expand the standard file or the pool.

4. Standards may be listed under different groups. If they are then click the + symbol to expand the required group.

5. Highlight the required standard (indicated by a check list icon) and select **Edit** (or **View** if the standards file is locked) from the **Edit** menu. The Parking Standard dialog will appear.

6. If you wish to edit a Standard Group then highlight it and select **Edit** (or **View** if the standards file is locked) from the
Edit menu. The Parking Standard Group dialog will appear.

7. To create a new parking standard, highlight the parent file or group and select **New Parking Standard** from the File menu.

8. To print a standard highlight it and select **Print** from the File menu or click the **Print** button. For more details refer to ??.

Creating a new parking standard file (Parking Standard File dialog)

1. Select **Parking Standards** from the AutoTrack, Parking Layout menu or click the **Parking Standards** button on the AutoTrack Parking Layout toolbar. The Parking Standard Explorer dialog will appear.

![Parking Standard File dialog]

3. Click the appropriate tab to edit or view the settings.

4. Edit the data as required and click **OK** to confirm when you are satisfied. Click **Cancel** to abort all changes and close the dialog.

Parking Standard File: Parking Standard File

1. Click the **Parking Standard File** tab.

2. Give the standard file a meaningful **Name**.

3. The **Version** and **Notes** fields are provided for additional information and may be used at your discretion.

4. The **File Name** is read only and will be filled in when the file is saved.
Parking Standard File: Users

Note
You may only add new users or edit existing users in standard files to which you have full access rights.

1. Click on the Users tab.

2. On a new standard file all users have full access as indicated by the default entry in the Users table. At least one user in the table must have full access before you may downgrade the default Any User rights.

To add a new user

2. Enter the new User Name. Depending upon how you want to restrict access, this may be a specific person or a department name.

3. Enter the Password and then repeat it in the Validate Password field. This checks that you typed the password correctly. If you do not enter a password the named user will be able to unlock the standard file without typing a password.
4. Finally set the **Access Level**. We recommend that you add any users that you want to have full access and then downgrade the default Any User to Read Only.

5. Even tighter restrictions can be placed by downgrading Any User to No Access and adding Read Only users as required. However, this may prove problematic in practice.

To edit an existing user (Maintain User dialog)

Note
You may only add new users or edit existing users in libraries to which you have full access rights.

1. On the Parking Standard File dialog highlight the user that you wish to edit and click **Edit**. The Maintain User dialog will appear.

2. Change the **Password** and / or set a new **Access Level** and click **OK** to confirm. If you do not enter a password the named user will be able to unlock the standard file without typing a password.

3. Click **Cancel** to abort any changes.

Note
*You cannot delete users; instead you must set their access level to **None**.*

Saving a parking standard file

1. Select **Parking Standards** from the AutoTrack, Parking Layout menu or click the **Parking Standards** button on the AutoTrack Parking Layout toolbar. The Parking Standard Explorer will appear.

2. Highlight the library that you want to save, right click and select **Save Parking Standard File As** from the drop down menu that appears. The Save Parking Standard File As dialog will appear.

3. Browse to the required storage directory, enter the filename and click **Save**.

4. If the standard file already has a name then you can use **Save Parking Standard File**.
Copying standards and units using drag and drop

Parking standards are automatically copied to the Pool when they are used but you may wish to edit a standard before using it or indeed build your own parking standards.

To copy a parking standard to the pool, select it, drag it over the Pool symbol and drop it. If you wish to copy it to another standard you will need full access rights in the destination parking standard file. The cursor will change to a no entry symbol to indicate areas where you may not drop the standard.

You can also make copies of parking standards within parking standard files in the same way; in this case the name of the standard is prefixed with the words ‘Copy of’, to distinguish it from the original.

Unlocking a parking standard file (Unlock Parking Standard File dialog) *(3555)*

1. Highlight the parking standard file that you want to unlock, right click and select **Unlock Parking Standard File** from the drop down menu that appears. If a password has been set for the standard file, the Unlock Parking Standard File dialog will appear. Otherwise, the standard file will be unlocked and you should refer to step 3.

 ![Unlock Parking Standard File dialog](image)

 Unlock Parking Standard File dialog

2. Enter your **User Name** and **Password** and click **OK**.

3. You will be granted whatever rights you have within the standard file. Thus, if you have full access rights within the current standard file then you will be able to change values in the unlocked standards; if, on the other hand you only have read only rights then you will only be able to use and copy the standards.
Creating a new group

1. Select **Parking Standards** from the AutoTrack, Parking Layout menu or click the **Parking Standards** button on the AutoTrack toolbar. The Parking Standard Explorer will appear.

2. Highlight the parking standard file that you want to add a group to.

4. Edit the details and click **OK** to confirm.

Parking Standard Group dialog

1. The Parking Standard Group dialog lists the parking standard group details.

2. Edit the **Name** and click **OK** to confirm.
Selecting a Parking Standard

To set a default parking standard

1. Highlight the parking standard that you want to set as your default and click the Make Default button.
2. The next time you place a parking bay or row this standard will be used.

Default Parking Standard dialog

1. AutoTrack allows you to define a default parking standard, i.e. a standard that will be used every time you place a parking bay unless you actively select an alternative. This can be very useful if you regularly use the same standard. If you select a standard to use and you do not have a default standard set the Default Parking Standard dialog will appear.

 ![Default Parking Standard dialog](image)

 Default Parking Standard dialog

2. If you select Yes then this standard will be selected automatically next time you place a parking bay. If you select No then you will be asked this again the next time you select a standard in similar circumstances.
3. If you don’t want to be asked again then tick Don’t ask me this again.
Viewing or editing parking standards

Parking standards supplied by Savoy can only be edited once they have been selected for a project. Then, any changes you make to the standard will affect not only new bays but also any bays that have already been placed. Once you have used a standard all bays placed will use that standard.

You may edit parking standards that you create. However, in order to prevent accidental changes, they will be locked when you close AutoTrack and you will need to unlock them to make any changes.

To edit a parking standard

1. Select **Parking Standards** from the AutoTrack, Parking Layout menu or click the **Parking Standards** button on the AutoTrack Parking Layout toolbar. The Parking Standard Explorer dialog will appear.

2. If the standard file that you require is not loaded then select **Open Parking Standard** from the **File** menu in the Parking Standard Explorer, browse to find the standard file and click **Open**. A new parking standard icon will appear in the Parking Standard Explorer with the name of the standard file beside it.

3. Click on the + symbol to expand the standard file or the pool.

4. Click the + symbol adjacent to the required group if necessary.

5. Highlight the required standard (indicated by a check sheet symbol dependant) and select **Edit** (or **View** if the Standard is locked) from the Edit menu. The Parking Standard dialog will appear.

6. If you wish to edit a parking standard group then highlight it and select **Edit** (or **View** if the standard file is locked) from the **Edit** menu in the Parking Standard Explorer. The Parking Standard Group dialog will appear.

7. To create a new parking standard highlight the parent file or group, right click and and select **New Parking Standard** from the menu that appears.
Parking Standard: General (4500)

1. Click on the General tab.

![Parking Standard: General tab](image)

2. The Name, Source and Notes allow you to specify the standard. Even though these fields are not compulsory we nevertheless recommend that you complete them since they are useful reminders when you come to reuse the standard at a later date.

3. Set the preferred Units using the drop down list box.
Parking Standard: End Islands (4480)

1. End islands are placed at the ends of a row of parking bays.
2. Click on the End Islands tab.

3. Set the Offset to adjacent bay to the distance from the start of the end island to the side marking of the last bay.
4. Set the Bayside corner radius to the radius of the corners of the island that meet the bay.
5. Set the Outer corner radius to the radius of the corners of the island that are adjacent to the access road.
6. Set the Minimum internal width to the minimum width of the island at any point.
7. Tick Allow width to increase to allow the island stretch sideways.
8. Set the Minimum width at kerb to the minimum width of the island where it meets the kerb, i.e. on the baseline.
9. Tick Draw island to show the island. Note that even if this option is not ticked the island is still calculated and the space allocated.
10. Tick Hatch and / or Cross hatch to display a hatch pattern within the island. You may adjust the hatch Spacing and Angle.
11. Click the Attributes button to modify the Colour, Line type and Line weight in the Attributes dialog.
Parking Standard: Bend Islands (4470)

1. Bend islands are placed at changes in direction of a row of parking bays.

2. Click on the Bend Islands tab.

3. Set the Offset to adjacent bays to the distance from the start of the island to the side marking of the adjacent bays.

4. Set the Bayside corner radius to the radius of the corners of the island that meet the bay.

5. Set the Outer corner radius to the radius of the corners of the island that are adjacent to the access road.

6. The Minimum internal width is the minimum width of the island at any point.

7. Tick Allow width to increase to allow the island stretch sideways.

8. Set the Minimum width at kerb to the minimum width of the island where it meets the kerb, i.e. on the baseline.

9. Tick Draw island to show the island. Note that even if this option is not ticked the island is still calculated and the space allocated.

10. Tick Hatch and / or Cross hatch to display a hatch pattern within the island. You may adjust the hatch Spacing and Angle.

11. Click the Attributes button to modify the Colour, Line type and Line weight in the Attributes dialog.
Parking Standard: In Bay Numbering *(4510)*

1. In bay numbering is when bay numbers are painted within the area of the parking bay.
2. Click on the **In Bay Numbering** tab.

![In Bay Numbering tab](image)

3. Set the **Width of number** to the preferred width of each character.
4. Set the **Height of number** to the preferred height of each character.
5. Tick **Roman numerals** to display the number in roman numeral format.
6. Tick **Number first bay**, **Number last bay** and / or **Number intermediate bays** to specify which bays should be numbered in the bay.
7. Set the **Offset from end of bay** to the distance from the end of the bay to the centre of the number.
8. Tick **Place in centre** to place the number centrally in the bay.
9. Tick **Place number at kerb end of bay** to offset the number from the kerb end of the bay instead of from the entrance end.
10. Set the **Rotation** to the required orientation for the number. If set to zero the number will face the driver entering the bay.
11. Click the **Line Style** button to modify the **Colour**, **Line type** and **Line weight** in the Attributes dialog.
Parking Standard: Kerbside Bay Numbering (4520)

1. Kerbside bay numbering is when bay numbers are painted either beside or at the end of the parking bays.

2. Click on the Kerbside Bay Numbering tab.

3. Set the **Width of number** to the preferred width of each character.

4. Set the **Height of number** to the preferred height of each character.

5. Tick **Roman numerals** to display the number in roman numeral format.

6. Tick **Number first bay, Number last bay** and / or **Number intermediate bays** to specify which bays should be numbered in the bay.

7. Set the **Offset from end of bay** to the distance from the end of the bay to the centre of the number.

8. Tick **Offset from kerb** to measure the offset from the kerb rather than the end of the bay.

9. Set the **Offset from side of bay** to the distance from the drivers side line to the centre of the number.

10. Set the **Rotation** to the required orientation for the number. If set to zero the number will face the driver entering the bay.

11. Click the **Line Style** button to modify the **Colour**, **Line type** and **Line weight** in the Attributes dialog.
Parking Standard: Vehicle Classes (4640)

1. Vehicles that might use the parking area are split into groups known as vehicle classes. Typically each vehicle class has different parking requirements.

2. Click on the Vehicle Classes tab.

3. The defined vehicle classes are listed in the large window. As you move the cursor between the entries the edit boxes beneath show the values associated with the selected vehicle class.

4. Set the Vehicle class to the name of the class.

5. Set the Default bay length to the length of bay required for this class of vehicle.

6. Set the Default bay width to the width of bay required for this class of vehicle.

7. Click New to add a new vehicle class. Highlight a vehicle class and click Duplicate to create a copy of an existing class or click Delete to delete the selected class.
Parking Standard: Service Types

1. Each parking area has particular access requirements which for ease of reference are called service types.
2. Click on the Service Types tab.

3. The defined service types are listed in the large window. As you move the cursor between the entries the edit boxes beneath show the values associated with the selected service type. Note that the aisle widths listed here are the base values used to create the bay dimensions table.

4. Set the One way aisle width to the width of aisle required for one way vehicle circulation past the entrances to the bays.
5. Set the Two way aisle width to the width of aisle required for two way vehicle circulation past the entrances to the bays.
6. Set the One way access road width to the minimum width of road required for one way circulation in the access roads feeding the row aisles.
7. Set the Two way access road width to the minimum width of road required for two way circulation in the access roads feeding the row aisles.
8. Set the Footpath width to the preferred width of footpath between back to back parking bays.
9. Click New to add a new service type. Highlight a service type and click Duplicate to create a copy of an existing type or click Delete to delete the selected type.
Parking Standard: Valid Bay Angles

1. In order to create an optimum parking layout it is normally desirable to limit the angles at which vehicles may park.

2. Click on the Valid Bay Angles tab.

3. Valid angles are listed in the large window.

4. To edit an angle highlight it in the list and edit the value in the Bay angle edit box beneath.

5. Click New to add a new angle.

6. Highlight an angle and click Delete to remove an angle from the list.
Parking Standard: Bay Dimensions

1. The principal bay dimensions are simply the length and width. Default values for these vary according to the vehicle class, service type, and bay angle.

2. Click on the Bay Dimensions tab.

3. The window shows the bay dimensions for every combination of service type, vehicle class and bay angle. The default Length and Width are taken from the values for the vehicle class. The Depth (the distance from the baseline to the entrance line) is calculated from simple geometry based upon the bay angle. Any or all values may be overwritten with preferred values.

4. The default 1 Way and 2 Way aisle widths are taken from the values for the service type. They may be overwritten with preferred values.

5. All values taken from the standard are shown in blue, calculated values are shown in red and explicitly entered values are shown in black.

6. Current parking standards often require that the default values are over-ridden. For example, the aisle width required for angled bays is normally less than that required for 90 degree bays. To change a value simply click in the field and enter the new value.
Parking Standard: Parking Meters

1. This dialog defines the characteristics of parking meters (if provided).

2. Click on the Parking Meters tab.

3. The Post diameter, Meter width and Meter length allow you to define a shape representing the meter.

4. The Offset from end of bay is the distance of the meter from the kerb end of the bay.

5. Tick Offset from kerb to offset the meter from the kerb rather than the end of the bay. Note that this only affects angled bays.

6. The Offset from side of bay is the distance of the meter from the drivers side line.

7. Tick Place in centre to display the parking meter in the centre of the bay.

8. Tick Shared meters serving adjacent bays to place double headed meters.

9. Set Meter head spacing to show the twin meter heads.

10. Click the Line Style button to modify the Colour, Line type and Line weight in the Attributes dialog.
Parking Standard: Bay Markings

1. The bay markings include the line types and colours, the hatch format and the T-marking size.

2. Click on the **Bay Markings** tab.

3. The defined bay markings are listed in the large window. As you move the cursor between the entries the edit boxes beneath show the values associated with the selected bay marking.

4. Tick **All line styles identical** if all bay markings use the same colour, line type and line weight. This will disable all the other attribute buttons. Click the adjacent button to modify the **Colour**, **Line type** and **Line weight** in the Attributes dialog.

5. Tick **Side lines** if you want a line full length down each side of each bay. Click the adjacent button to modify the **Colour**, **Line type** and **Line weight** in the Attributes dialog.

6. The **Side line offset** is the distance from the baseline to the start of each of the side lines.

7. Some places the side lines are drawn double jointed at the baseline and called hairpins. The **Side line hairpin separation** is the spacing of the two side lines.

8. Tick **Base line** if you want a line drawn along the kerb end of each bay. Click the adjacent button to modify the **Colour**, **Line type** and **Line weight** in the Attributes dialog.

9. Tick **Entrance line** if you want a line drawn across the entrance of each bay. Click the adjacent button to modify the **Colour**, **Line type** and **Line weight** in the Attributes dialog.

10. Tick **Side line T markings** if you want T marking at the intersection of the sides and entrance of each bay. Note that
this may be in addition to, or instead of, side and / or entrance lines. Click the adjacent button to modify the Colour, Line type and Line weight in the Attributes dialog.

11. The **Leg length of T marking** is the length of the vertical of the T marking.

12. The **Cross width of T marking** is the width of the horizontal of the T marking.

13. Tick Hatch and / or Cross hatch to display a hatch pattern. You may adjust the hatch Spacing and Angle.

14. Click New to add a new bay marking. Highlight a bay marking and click Duplicate to create a copy of an existing bay marking or click Delete to delete the selected marking.
Parking Standard: Bay Symbols

1. This dialog allows you to define bay symbols and includes type (e.g. disabled markings), size, colour and location. It also caters for additional text.

2. Click on the Bay Symbols tab.

3. The defined bay symbols are listed in the large window. As you move the cursor between the entries the edit boxes beneath show the values associated with the selected bay symbol.

4. The Symbol is the icon that will be drawn in the bay. Click the adjacent button to modify the Colour, Line type and Line weight in the Attributes dialog.

5. The Symbol Offset is the distance from the entrance line to the centre of the symbol.

6. Tick Place in centre of bay to place the symbol halfway between the entrance line and the baseline.

7. The Symbol height is the overall height of the selected symbol. The symbol proportions are constrained so there is no need to enter a width.

8. You may place a text instead of, or as well as, a symbol. The Text is the text that will be displayed in the bay. Click the adjacent button to modify the Colour, Line type and Line weight in the Attributes dialog.

9. The Text Offset is the distance from the entrance line to the centre of the text.

10. Tick Place in centre of bay to place the text halfway between the entrance line and the baseline.

11. The Text height is the text character height.
12. The **Width** is the overall width of the text string, not the individual character width.

13. The **Text Rotation** is the orientation of the text. If set to zero the text will face the driver entering the bay.
Parking Standard: Safety Zones

1. This dialog allows you to define extra space around parking bays for special uses, e.g. for disabled drivers.

2. Click on the Safety Zones tab.

3. The defined safety zones are listed in the large window. As you move the cursor between the entries the edit boxes beneath show the values associated with the selected safety zone.

4. The Extra on driver side is the extra width required on the driver’s side of the bay.

5. The Extra on passenger side is the extra width required on the passenger’s side of the bay.

6. The Extra on entrance is the extra length required at the entrance of the bay.

7. The Offset from bay is the distance from the bay side line to the start of the safety zone markings.

8. The Corner radius is the radius to be applied to the corners of the safety zone.

9. Tick Draw safety zones to show the safety zone markings. Note that this option merely switches off the display of the markings, the safety zone area is still calculated and taken into account when determining bay layout.

10. Tick Share safety zones to allow the extra area allocated for adjacent safety zones to overlap.

11. Tick Hatch and / or Cross hatch to display a hatch pattern within the safety zone. You may adjust the hatch Spacing and Angle.
12. Click the **Line Style** button to modify the **Colour**, **Line type** and **Line weight** in the Attributes dialog.

13. Click **New** to add a new safety zone. Highlight a safety zone and click **Duplicate** to create a copy of an existing safety zone or click **Delete** to delete the selected zone.
Parking Standard: Bay Styles

1. This dialog lets you define bay styles by combining bay markings, safety zones, bay symbols, etc.

2. Click on the Bay Styles tab.

3. The defined bay styles are listed in the large window. As you move the cursor between the entries the edit boxes beneath show the values associated with the selected bay style.

4. The Bay marking is the bay marking to be used with the selected bay style. To add a bay marking to the list click the More button (…) adjacent to the drop down list.

5. The Safety zone is the safety zone to be used with the selected bay style. To add a safety zone to the list click the More button (…) adjacent to the drop down list.

6. The Bay symbol is the bay symbol to be used with the selected bay style. To add a bay symbol to the list click the More button (…) adjacent to the drop down list.

7. Tick Custom bay width to set a non-standard width and set Width.

8. Tick Allow width to increase to ensure that a proportion of any extra space available is added to the width of bays of this type.

9. Tick Number bay and / or Number kerb to add bay numbering in the bay or on the kerbside. The numbering format is defined within the standard. Note that, depending upon the numbering definition in the standard, not all bays will necessarily be numbered.

10. Tick Wheel stop, Privacy post, Safety post and / or Parking meter to add these features to the selected bay type.
Parking Standard: Safety Posts

1. Safety posts are generally placed at the ends of bays and prevent vehicles from accidentally hitting pedestrians.

2. Click on the Safety Posts tab.

3. The Post diameter is the diameter of the safety post.
4. The Width is the width of the safety barrier, i.e. the distance measured in the direction of the bay width.
5. The Length is the length of the safety barrier, i.e. the distance measured in the direction of the bay length.
6. The Offset is the distance from the centre of the safety post to the end of the bay.
7. Tick Offset from kerb to measure the offset from the kerb instead of the end of the bay. Note this will only affect angled bays.
8. Click the Line Style button to modify the Colour, Line type and Line weight in the Attributes dialog.
Parking Standard: Privacy Posts

1. Privacy posts are placed at the entrances to personal parking bays to prevent unauthorized use.

2. Click on the Privacy Posts tab.

3. The Post diameter is the diameter of the privacy post.

4. The Width is the width of a privacy barrier, i.e. the distance measured in the direction of the bay width.

5. The Length is the length of a privacy barrier, i.e. the distance measured in the direction of the bay length.

6. The Offset is the distance from the centre of the privacy post to the end of the bay.

7. Tick Offset from kerb to measure the offset from the kerb instead of the end of the bay. Note this will only affect angled bays.

8. Click the Line Style button to modify the Colour, Line type and Line weight in the Attributes dialog.
Parking Standard: Wheel Stops (4650)

1. Wheel stops are placed a short distance back from the end of the bay and prevent vehicles from overhanging the end.
2. Click on the Wheel Stops tab.

3. The **Width** of the wheel stop is measured in the direction of the length of the bay.
4. The **Length** of the wheel stop is measured in the direction of the width of the bay.
5. Tick **Stretch to fill bay width** to place wheel stops across the entire width of the bay.
6. Tick **Shared wheel stops** to place wheel stops on the dividing line between two adjacent bays. If you tick this option then you will no longer be able to place the wheel stop using **Offset from side of bay** or **Place in centre of bay**.
7. The **Top width indent** is the taper in the width of the wheel stop, e.g. if the base width is 0.3m and the width at the top is 0.2m then the top width indent is 0.05m.
8. The **Top length indent** is the taper in the length of the wheel stop, e.g. if the base length is 1.5m and the length at the top is 1.4m then the top length indent is 0.05m.
9. The **Offset from end of bay** is the distance from the centre of the wheel stop to the end of the bay.
10. The **Offset from side of bay** is the distance from the centre of the wheel stop to the bay side line on the driver’s side.
11. Tick **Place in centre of bay** to position the wheel stop in the middle of the bay width.
12. Click the **Line Style** button to modify the **Colour**, **Line type** and **Line weight** in the Attributes dialog.
Parking Standard: Construction Lines (4490)

1. Construction lines are generally used only in setting out the parking area and then switched off.

2. Click on the Construction Lines tab.

3. Tick Row baseline to show the baseline construction line. Click the Attributes button to modify the Colour, Line type and Line weight in the Attributes dialog.

4. Tick Car park island kerb boundary to show guidelines at the outer face of the start and island. Click the Attributes button to modify the Colour, Line type and Line weight in the Attributes dialog.

5. Tick Flow direction arrows to show arrows in the aisles indicating the direction of vehicle movement. Click the Attributes button to modify the Colour, Line type and Line weight in the Attributes dialog.

6. Tick Aisle clearance zone to show a line representing the minimum distance from the bay entrance lines to the nearest obstruction. Click the Attributes button to modify the Colour, Line type and Line weight in the Attributes dialog.
Attributes dialog

1. Select the **Colour** from the drop down list of 254 pens. To set a custom colour select {custom} and click on the colour swatch.

2. Select the **Line type** from the drop down list. The line types listed are those currently available in your CAD system. If you wish to add a line type you should cancel this dialog and create the line type in your host CAD system.

3. Select the **Line weight** from the drop down list. Note that line weights are real world dimensions so if you select a line weight of 2mm the object will be drawn with 2mm thick lines.
Placing rows of bays

A row of bays is considered to be a single or double sided row of bays with any number of bends. All the bays on each side of a double row must have the same properties but they may differ from those of the other side. Rows may be placed freehand or parallel to other rows or objects.

To place a row of bays freehand

1. Select **Place Row of Bays** from the AutoTrack, Parking Layout menu or click the **Place Row of Bays** button on the Parking Layout toolbar.

2. If this is the first row placed in the current drawing, and you do not have a default standard set, the Parking Standard Explorer will appear for you to select the required standard (see Viewing a standard in a parking standard file or the pool (Parking Standard Explorer dialog)\(^{460}\)). If you do not have a default standard set you may then be offered the chance to set it as your default (see Default Parking Standard dialog \(^{4690}\)). Finally, you will be asked to give the standard a unique name for easy reference in the current drawing (see Unique parking standard names).

3. The Row Properties dialog will appear non-modally, i.e. you can still access the main CAD window without closing the dialog first.

4. Set the row properties. Refer to Editing rows (Parking Row Properties dialog) for more details of this process.

5. Move the cursor to where you want the row baseline to start and left click to confirm.

 Note
 You may use snap to help you locate the precise start position.

6. Move the cursor to end of the row and left click to confirm.

7. Repeat this process, placing a point at each vertex or bend on the row.

8. When you have placed the last point right click to exit.

9. Finally you should select which side you want bays, either left, right or both. The red arrow that is displayed halfway along each row segment shows the current setting. Move the cursor to the left of the row to select bays only on the left, to the right to select bays only on the right or over the row baseline to select bays on both sides.

 Note
 To disable the row side selection while the Parking Row Properties dialog is displayed untick Skip row side selection before placing the row.
To place a parallel row of bays

10. You can place rows of bays parallel to existing rows using the Place Parallel Row tool. Rows placed in this way are automatically extended or shortened according to the angles of the end islands, which themselves reflect the angle of the access road.

11. Select Place Parallel Row of Bays from the AutoTrack, Parking Layout menu or click the Place Parallel Row of Bays button on the Parking Layout toolbar. The Parking Row Properties dialog will appear non-modally, i.e. in such a way that you can still access the CAD window without closing the dialog first.

12. If this is the first row placed in the current drawing, and you do not have a default standard set, the Parking Standard Explorer will appear for you to select the required standard (see Viewing a standard in a parking standard file or the pool (Parking Standard Explorer dialog) \(\text{[440]}\). If you do not have a default standard set you may then be offered the chance to set it as your default (see Default Parking Standard dialog \(\text{[469]}\)). Finally, you will be asked to give the standard a unique name for easy reference in the current drawing (see Unique parking standard names).

13. Set the properties of the parallel row. Refer to Editing rows (Parking Row Properties dialog) for more details of this process.

14. Select the row or line to which the new row will be parallel. The new row will appear and move as you move the cursor.

15. The dashed line from the end of the existing row to the cursor represents the distance of the baseline of the new row from the baseline of the existing row. Move the cursor until the row is positioned as you want it and then left click to confirm.

 Note
 The row cannot be placed closer to the existing row or line than the minimum clearance zone allowed by the standard.

16. Finally you should select which side you want bays, either left, right or both. The red arrow that is displayed halfway along each row segment shows the current setting. Move the cursor to the left of the row to select bays only on the left, to the right to select bays only on the right or over the row baseline to select bays on both sides.

 Note
 To disable the graphical row side selection tick Skip row side selection on the Parking Row Properties dialog before placing the row. Tick Always skip row side selection if you want this feature disabled until further notice.
Unique parking standard names (Parking Standard Name dialog)

In order to make it easier to identify standards, and the parking bays that use them, we recommend that each standard used has a unique name. Therefore, when you place a new row (either freehand or parallel), that uses a standard not previously used within the current drawing, the Parking Standard Name dialog will appear offering a unique name of the form "Area n based upon {Parking Standard}". You may edit this name but it must be unique. If you cancel the Parking Standard Name dialog the default name that was initially offered will be used.

To subsequently change the name of a standard, open the Parking Standard Explorer, select the required standard, right click and select Edit. Now you can change the name. See also To edit a parking standard.
Placing access roads

Access roads can be placed cutting through existing parking rows. These roads may be at any angle and may cut through as many parking rows as you wish.

To place an access road freehand

1. Select Place access road from the AutoTrack, Parking Layout menu, click on the Place access road button on the AutoTrack Parking Layout toolbar or type ATRAPLACEACCESSROAD on the command line.

2. The access road is defined by the left kerb, the right kerb or the centreline. Use the mouse to pick the start of the access road followed by the end. Note that the points you pick are only used for alignment purposes and their locations are otherwise unimportant. The Access Road Properties dialog will appear.

3. The width of the road may either be determined from a standard or entered explicitly.

4. Select the Standard, Service type and Flow type and the Width from standard will be displayed. If you want to over-ride this value tick Custom width and enter the required width.

5. Set the Line alignment according to the alignment points you picked.

6. Click OK to confirm. AutoTrack will place the access road trimming any parking rows that your alignment crosses and calculating new end islands where necessary.
To place an access road on a line

1. Select **Place access road on line** from the AutoTrack, Parking Layout menu, click on the **Place access road on line** button on the AutoTrack Parking Layout toolbar or type `ATRACREATEACCESSROADFROMLINE` on the command line.

2. Select a line representing the alignment of the left kerb, the right kerb or the centreline. The Access Road Properties dialog will appear.

3. The width of the road may either be determined from a standard or entered explicitly.

4. Select the **Standard**, **Service type** and **Flow type** and the **Width from standard** will be displayed. If you want to override this value tick **Custom width** and enter the required width.

5. Set the **Line alignment** according to the alignment points you picked. Note that the access road will be drawn from start to finish of the line that you picked so if this line represents a kerb you should make sure you know which end is the start. If you get it wrong then use Undo and rerun the command specifying the opposite kerb.

6. Click **OK** to confirm. AutoTrack will place the access road trimming any parking rows that your alignment crosses and calculating new end islands where necessary.
Parking Report (4410)

The Parking Report is a dynamically updated bay count by any or all of the following:- parking standard, bay style, service type, vehicle class and / or parking zone.

To display the parking report

2. Click Close when you no longer need it.

To customise the parking report

2. Either select Show all columns or select Show selected columns and then the specific criteria you wish to report by. The Parking Report will change when you click OK.
To export a parking report

1. Click the Export button on the Parking Report dialog. A Save As dialog will appear.

2. Select the type of delimited file you wish to save from the Save as type drop down list.

3. Browse to the directory in which you wish to save the file.

4. Name the file without the extension and click Save.

5. The saved file may be read into Excel or any other program that supports comma or tab delimited files.
Parking rows may comprise back to back bays or a single row of bays accessible from one or both sides. Back to back bays may differ in size, style and angle. Twin rows and single rows with single access may optionally have a kerb side access footpath. Dual access single rows of bays cannot have a footpath. If you need to have varying bay styles within a row then you should set the row style to the predominant style on each side and use the bay editing tool to change the style of those that differ.

To edit a parking row

1. Select Edit Parking Row from the AutoTrack, Parking Layout menu or click the Edit Parking Row button on the AutoTrack Parking Layout toolbar. The Parking Row Properties dialog will appear.

2. The bay alignment and end detail settings define the type of parking and in some cases restrict the bays to single or double row. If a double row is selected each side may have different properties.

3. The vehicle Flow direction in conjunction with the Bay angle determines how close the row can be placed to other rows or
obstacles.

4. The **Vehicle class** and **Vehicle type** determine the basic size of the bay. However, the basic dimensions are often modified by the **Bay style**, so for example a disabled bay is generally wider than a standard bay.

5. The **Zone name** merely provides a means to divide a parking area into areas or zones. The Parking report can be set to report by zone name.

6. If you want the same bay angles on each side of a double row tick **Lock angles**.

7. Set the **Start No.** for each side to force a bay numbering sequence.

8. Each row may have islands and / or footpaths. Tick **Footpath** and enter a **Width** to specify a footpath running along the baseline, i.e. between the two sides on a double row or ‘behind’ a single row.

9. Tick **Start island** or **End island** to add islands at the start or end of the row. If you want a footpath to continue through the island tick **Has footpath**.

10. Tick **Bend islands** to add islands at every bend in the row. If you want a footpath to continue over the bend islands tick **Have footpaths**.
Individual parking bays within a row may vary from the default bay type for the row. However, every bay must be of a defined type for reporting purposes. Thus, for example, if you wanted one bay within a row to have a wheel stop you would first have to define that bay type and then set the bay to that type.

To edit a parking bay

1. Select **Edit Parking Bay** from the AutoTrack, Parking Layout menu or click the **Edit Parking Bay** button on the AutoTrack Parking Layout toolbar. Select the row you want to edit. Grips will appear in each bay and the Parking Bay Properties dialog will appear.

[Image of Parking Bay Properties dialog]

2. As you move the cursor over each bay the properties dialog updates to show the bay type. The other fields merely show what features comprise the selected bay type. All values will be displayed as read-only, i.e. non-editable.

3. As soon as you select a bay the **Bay type** drop down list box should become active, i.e. editable. If you select a different bay type the other fields will change to reflect the settings for the new type. The underlying bay type defined for the row is shown as (Default).

Note

If you want to change the bay type for most or all of a row then you should consider editing the row properties.
Parking islands are placed at the ends of each row of bays and at each change of direction of the row. End islands and bend islands may have different default properties and thereafter any island may be edited such that it becomes unique.

To edit a parking island

1. Select **Edit Parking Island** from the AutoTrack, Parking Tools menu or click the **Edit Parking Island** button on the AutoTrack Parking Layout toolbar. Select the row you want to edit. Grips will appear in each island and the Parking Island Properties dialog will appear.

2. As you move the cursor over each island the properties dialog updates to show the island properties. All values will be displayed as read-only, i.e. non-editable.

3. As soon as you select an island the properties will become active, i.e. editable.

4. Tick **Footpath** if you want a row footpath to continue through the selected island. The same footpath option is shown on the row properties dialog and each updates when the other is changed.

 Note

 If you tick this box but the row has no footpath defined, no footpath will be added to the island.

5. If you want the island to differ from the standard tick **Custom non-standard properties** and change appropriate values.

6. The angles of ends of the start and end islands may be adjusted.
This is often useful if an access road passes the end of the row. You can also edit the left side of the island separately from the right side if necessary. If the end of the island is angled uniformly across the width tick Lock left and right access road angles, and enter just the Left access road angle. If the left and right angles vary untick this box and additionally enter the Right access road angle.
Editing parking row layout

To move a row of bays

1. Select Move Parking Row from the AutoTrack, Parking Tools menu or click the Move Parking Row button on the AutoTrack Parking Tools toolbar.
2. Select the row you wish to move.
3. Select the base point for the move.
4. Select the new position for the base point. The row will be redrawn in the new location.

To rotate a row of bays

1. Select Rotate Parking Row from the AutoTrack, Parking Tools menu or click the Rotate Parking Row button on the AutoTrack Parking Tools toolbar.
2. Select the row you wish to rotate.
3. Select the base point about which the row will be rotated.
4. Select the rotation angle. The row will be redrawn in the new location.

To copy a row of bays

1. Select Copy Parking Row from the AutoTrack, Parking Tools menu or click the Copy Parking Row button on the AutoTrack Parking Tools toolbar.
2. Select the row you wish to copy. A copy of the row will appear.
3. Place the new row as you wish.

To explode a row of bays

After a row of parking bays has been exploded it cannot be edited using AutoTrack parking tools. We therefore recommend that you do not explode your parking data without first making a backup copy.

1. Select Explode Parking Row from the AutoTrack, Parking Tools menu or click the Explode Parking Row button on the AutoTrack Parking Tools toolbar.
2. Select the row you wish to explode. The row will be exploded into simple drawing entities.

To delete a row of bays

1. Select Delete Parking Row from the AutoTrack, Parking Tools menu or click the Delete Parking Row button on the AutoTrack Parking Tools toolbar.
2. Select the row you wish to delete. The row will be deleted without further warning.
To join two rows of parking bays

1. Select Join Parking Rows from the AutoTrack, Parking Tools menu or click the Join Parking Rows button on the AutoTrack Parking Tools toolbar.

2. Select the two rows you wish to join. The two rows will be extended or shortened, without changing the alignment of the rows, until they meet.

To extend a row of parking bays

1. Select Extend Parking Row from the AutoTrack, Parking Tools menu or click the Extend Parking Row button on the AutoTrack Parking Tools toolbar.

2. Select the row you wish to extend. An arrow will appear at the end of the row closest to the cursor. As you move the cursor closer to the other end it will move to that end.

3. Move the cursor until the arrow is at the end you wish to extend and left click.

4. Now as you move the cursor the row will lengthen and shorten until you left click again. Notice that you can use this command to shorten a row beyond a bend.

To add a vertex to a row of parking bays

1. Select Add Parking Row Vertex from the AutoTrack, Parking Tools menu or click the Add Parking Row Vertex button on the AutoTrack Parking Tools toolbar.

2. Select the row you wish to extend. An arrow will appear at the end of the row closest to the cursor. As you move the cursor closer to the other end it will move to that end.

3. Move the cursor until the arrow is at the end you wish to extend and left click.

4. Now as you move the cursor a new segment will be created from the end you selected.

To adjust a parking row

1. Select Adjust Parking Row from the AutoTrack, Parking Tools menu or click the Adjust Parking Row button on the AutoTrack Parking Tools toolbar.

2. Select the row that you wish to adjust.

3. Small squares or “grips” will appear at various locations along the row. Each may be used to adjust a different aspect of the row.

4. Select the single green grip to move the entire row.

5. Select the grip furthest from the end of the row to extend the row with a new segment. If you select the next grip in you can extend the row in line. Finally, select the grip exactly at the end of the row to move or extend the end of the row in any direction.
6. Select the outermost grips on the sides of the end islands to adjust the angle of that side of the end island. Use the next grip in to adjust both sides together.

7. At one end of the row there are grips beside each of the first bays. Use these to change the bay angle. Note that you can only set and angle defined in the selected standard.

8. Select the grip at each bend vertex to adjust the position of the bend.

9. Select the grips on the direction arrows to specify a different flow direction. To set the direction one way select the grip, move the cursor in the direction you want the flow and left click to confirm. To set two-way traffic, select the arrow, move the cursor alongside it and left click to confirm.
Managing AutoTrack data

AutoTrack generates the same data regardless of the operating system or CAD system but it is stored in the CAD system native drawing format and CAD systems cannot always read each others drawing files.

However, AutoTrack incorporates a system to transfer data. Basically, data is exported from one CAD system and then imported in the receiving CAD system.

Exporting AutoTrack data (Export AutoTrack Data dialog) (5090)

1. Select Export AutoTrack data from the AutoTrack Utilities menu. The Export AutoTrack data dialog will appear.

![Export AutoTrack data dialog](image)

2. By default AutoTrack will assume that you want to create an export file in the same directory and with the same base name as the current drawing. If you wish to specify a different file use the Browse button and edit box to specify the export filename.

3. Tick Purge AutoTrack data after exporting to effectively transfer the AutoTrack data to another drawing. This will write the transfer file and then remove all AutoTrack data from the source drawing.
Importing AutoTrack data (Import AutoTrack Data dialog) (5080)

1. Select Import AutoTrack data from the AutoTrack Utilities menu. The Import AutoTrack Data dialog will appear.

 ![Import AutoTrack data dialog]

2. AutoTrack will look in the current directory for an AutoTrack export file with the same base name as the one currently loaded. If it finds one it will display it as the default. If you wish to import a different data file then use the Browse button to find it.

3. Tick Import Settings if you want the imported settings to replace your current AutoTrack settings.

4. Tick Import Swept Paths if you want to import the swept paths.

5. If you tick neither box no data will be imported.

Using Export / Import for personal settings

You can save personal settings on a computer used by several people by enabling the option to save settings to your “My Documents” folder (See System Settings: Start Up). However, if you do not want to enable this option you can use Export and Import to give the same result…

1. Run AutoTrack and set your preferences.

2. Select Export AutoTrack Data from the AutoTrack Utilities menu. The Export AutoTrack Data dialog will appear.

 ![Export AutoTrack data dialog]

3. Browse to your personal area (e.g. your personal documents and settings directory or personal area on the file server).

4. By default AutoTrack creates an export file with the same name as the current drawing so we recommend that you change the filename to something more appropriate, maybe something like ATR_SETTINGS.

5. Click OK to save the file.
6. When you next run AutoTrack select **Import AutoTrack data** from the AutoTrack Utilities menu.

7. When the Import AutoTrack data dialog appears tick only the **Import settings** box before clicking **OK** to load the settings.

Drawing file size

AutoTrack data is stored in the host CAD drawing allowing you a number of benefits. However, as you use AutoTrack the host system frequently needs to make temporary copies of data. Most of these copies may be removed but, depending upon how your CAD system is configured, they often are not.

Luckily there are ways that you can recover the space taken by the working data.

Recovering space in AutoCAD drawings

By default AutoCAD does an incremental save of the drawing using **QSAVE**. This does not remove all deleted and temporary objects.

Use **PURGE** to remove all unused objects or **SAVEAS** to perform a full save and remove superseded data.

Recovering space in MicroStation drawings

Use **COMPRESS DESIGN** to remove superseded AutoTrack data.

Repair AutoTrack data

Under certain circumstances and on rare occasions AutoTrack data links can become broken. So, for example, a layer used by an AutoTrack path may be deleted. The Repair AutoTrack data function is used to reinstate these links. It is very simple to use.

1. Select **Repair AutoTrack data** from the AutoTrack Utilities menu.

2. AutoTrack will scan all AutoTrack objects and try to repair any broken data links.
Worked Example

We strongly recommend that before you proceed with the worked example you view the demonstration video supplied on the AutoTrack CD.

This worked example is a very simple introduction to the program to show how easy it is to generate vehicle swept paths. It does not cover all aspects of the program. Because the AutoCAD drawings were produced on AutoCAD 2000, AutoCAD R14 users may get a warning that AutoCAD 2000 is not loaded – ignore it.

Note
You should not re-save these examples but if you do, or if the drawing does not appear as you expected, then reinstate the original files from the CD.

Important (MicroStation users only)

1. Start MicroStation and select Preferences from the Workspace menu.
2. Select Category Operation.
3. Make sure that the box Immediately Save Design Changes is unticked. This will cause a save prompt to appear when you close down drawings and reduce the risk of the example drawings being changed.
Step 1: Running AutoTrack and changing some commonly used settings

1. Select AutoTrack for {your CAD system} from the AutoTrack menu on your Start Programs Taskbar.

2. Load the drawing STEP1 from the EXAMPLE\AUTOCAD subdirectory (or EXAMPLE\MSTATION subdirectory if you are using MicroStation or EXAMPLE\SAVOYCAD directory if you are using SavoyCAD) of the AutoTrack directory.

3. Click the **Drawing Settings** button on the AutoTrack toolbar. The Disclaimer will appear followed by the Drawing Settings dialog.

4. We need to change our scale because the drawing is in millimetres so click the **Scale** tab.

 Drawing Settings dialog: Scale tab

 Drawing Unit represents 1 millimetres (or 1 Master Unit represents 1 millimetres if you are using MicroStation).

5. Change the units to millimetres so that it now reads **1 Drawing Unit represents 1 millimetres** (or **1 Master Unit represents 1 millimetres** if you are using MicroStation).

6. Make sure that the **Prompt for scale** box is ticked.

7. Click the **Speed** tab.

8. Change the **Forwards Design Speed** to 10 km/h.

9. Click **OK** to close the Drawing Settings dialog and click the **System Settings** button. The System Settings dialog will appear.

10. Click the **Manual Drive** tab.

11. Select your preferred **Control Position** – the position of the control overlay on screen.

12. Click **OK** to confirm these changes.

13. Click the **Vehicle Library** button on the AutoTrack toolbar. The Library Explorer will appear.
Library Explorer

14. Find the library *European Vehicles* and click the + symbol beside it. The library will expand to show the vehicle groups contained within it.

15. Find the vehicle group called *Heavy Goods Vehicles* and click the + symbol beside that.

16. Now highlight the *Large Articulated Vehicle* and click **Make Default**. This has set a default vehicle. Click **OK** to close the Library Explorer.
Step 2: Selecting a vehicle and using Manual Drive (not Lite)

1. Load drawing STEP2 from the Example subdirectory of the AutoTrack directory. Notice how AutoTrack loads automatically because the drawing has been initialised.

2. Click the Manual Drive button on the AutoTrack toolbar.

3. If the Drawing Settings dialog appears make sure that the units are set to millimetres and then click OK.

4. AutoTrack will select the default vehicle automatically and display a ghost image of it at the cursor. We don’t want to use this vehicle so right click to display the Position Vehicle Dialog.

5. Click the Vehicle Library button. The Library Explorer will appear.

6. Find the library European Vehicles and click the + symbol.
beside it. The library will expand to show the vehicle groups contained within it.

7. Find the vehicle group called *Cars & Recreational Vehicles* and click the + symbol beside that. Now expand the group *Pre-2006 Models*.

8. Highlight the *Medium Sized Saloon Car* and click **Proceed**.

9. Click the **Location** button. Move the mouse to position the front wheels of the vehicle on the road at the centre of the circle at point A on the drawing and left click to confirm. The Position Vehicle dialog will appear.

10. Click the **Heading** button. Move the cursor until the vehicle is facing towards the roundabout and aligned with the road and left click to confirm.

11. Click the **Location** button to re-adjust the position if necessary.

12. When you are happy with the vehicle position click **Proceed**. The control overlay will appear.

13. Click the **Go** button. The buttons will disappear and as you move the cursor over the control overlay the vehicle will respond accordingly.

14. Right click to pause or resume.

15. If you make a mistake pause and click the **Auto Undo** button which will undo a few metres.

16. Try to drive the vehicle around the roundabout and take the third exit without hitting the kerbs.

17. When you have finished click the **Stop** button.

18. Load drawing STEP3 to see how your manoeuvre should look.
Step 3: Selecting a vehicle and using AutoDrive (not Lite version)

1. Load the drawing STEP3 from the Example subdirectory of the AutoTrack directory.

2. Zoom to extents and then zoom to the green rectangle.

3. Click the AutoDrive Bearing button on the AutoTrack Drive toolbar.

4. The default vehicle will be selected and the name will be displayed on the status line of your CAD system.

5. If the Drawing Settings dialog appears make sure that the units are set to millimetres and then click OK.

6. A ghost image of the vehicle will appear at the cursor.

7. Move the mouse to position the front wheels of the vehicle on the road at the centre of the circle at point B on the drawing and left click to confirm.

8. Now move the cursor until the vehicle is facing along the road towards the top left of the drawing and left click to confirm.

9. If the Position Vehicle dialog appears then click the Location button to adjust the vehicle location and the Heading button to adjust the vehicle heading. If you don't want to see this dialog when you position vehicles in future then tick the box. Click Proceed.

10. The AutoDrive options dialog will appear.

11. Make sure that Freehand Turn is selected.

12. If the Position Vehicle dialog did not appear and you need to readjust the position move the cursor over the front axle. When a cyan square appears, left click and use the mouse to move the vehicle. Left click to confirm the new position. If you need to readjust the heading then move the mouse over the rear coupling of the first unit (the tractor). When the cyan square appears, left click and use the mouse to adjust the heading.

13. When you are happy with the vehicle position and orientation, move the mouse in front of the vehicle. As you move the mouse the path is drawn from the starting position.
14. Move the cursor over the point marked 1 and left click to confirm.
15. Repeat for the other points marked 2 to 5.
16. If you make a mistake while picking points then click the **Delete Last Target** button on the Path toolbar which will remove the last point.
17. After selecting point 5 right click to exit.
18. Don’t worry about minor mis-alignments because they can be corrected later.
19. Load drawing STEP4 to see how your manoeuvre should look.
Step 4: Selecting a vehicle and using Follow

1. Load the drawing STEP4 from the Example subdirectory of the AutoTrack directory.

2. Zoom to extents and then zoom on the green rectangle.

3. Click the **Drawing Settings** button. The Drawing Settings dialog will appear.

![Drawing Settings button](image)

4. Click on the **Speed** tab and change the forward speed to 5kph.

5. Click **OK** to leave the Drawing Settings dialog.

6. Click the **Follow** button on the AutoTrack toolbar.

7. You will be prompted with the name of the default vehicle and asked if you want to use it. Select **No**. The Library Explorer will appear.

8. Find the library **European Vehicles** and click the + symbol beside it. The library will expand to show the vehicle groups contained within it.

9. Find the vehicle group called **Cars and Recreational Vehicles** and click the + symbol beside that. Then expand the group **Pre-2006 Models**.

![Drawing Settings dialog: Speed tab](image)

![Follow button](image)
10. Now highlight the *Small Car* and click **Proceed**. The Explorer will disappear. If the Drawing Settings dialog appears make sure that the units are set to millimetres and then click **OK**.

11. Select the line you wish to follow. The Follow Settings dialog will appear.

12. Check that Direction is set to Forwards and then click **OK**.

13. The vehicle will follow the line and the Drive dialog will reappear. Click **Exit** to exit.

14. Load drawing STEP5 to see how your manoeuvre should look.
Step 5: Selecting a vehicle and using Script (not Lite version)

1. Load the drawing STEP5 from the Example subdirectory of the AutoTrack directory.
2. Zoom to extents and then zoom on the green rectangle.
3. Click the **Script** button on the AutoTrack toolbar. The Script Editor dialog will appear.

4. Now type the following commands in the edit box and press return after each entry.

5. Type **UM** to set the distance units for the rest of the script to metres. This ensures that the script will run correctly on drawings created in other units.

6. Type **V?** to ask the user for a vehicle.

7. Type **P?** to ask the user for position.

8. Type **H?** to ask the user for a heading.

9. Type **F10** to drive forwards 10 metres.

10. Type **FRI6W90** to make the vehicle drive forwards and turn on an inside wheel radius of 6 metres until the wheel angle has increased by 90 degrees.

11. Now to straighten up type **FH12** to drive forwards for 12 metres with hands off. Your Script Editor window should now look like this:-
12. Now, to use the script click the Run Script button.

13. The first command was select vehicle so the Library Explorer will appear.

14. Find the library European Vehicles and click the + symbol beside it. The library will expand to show the vehicle groups contained within it.

15. Find the vehicle group called Refuse Vehicles and click the + symbol beside that. Then expand the group Others.

16. Now highlight Large Refuse Vehicle (3 axle) and click Proceed. The explorer will disappear. If the Drawing Settings dialog appears make sure that the units are set to millimetres and then click OK.

17. The Explorer will disappear and, because we told the script to prompt us to position the vehicle, a ghost image of the vehicle will appear at the cursor.
18. Move the mouse to position the front wheels of the vehicle on the road at the centre of the circle at point D on the drawing and left click to confirm.

19. Finally, use the mouse to specify the vehicle's initial heading and left click to confirm.

20. The vehicle will drive the specified manoeuvre.

21. If the manoeuvre is not quite correctly positioned then use the AutoCAD move and rotate commands to adjust it.

22. If you wish you can click Script again and save the script.

23. Load drawing STEP6 to see how your manoeuvre should look.
Step 6: Changing the appearance of your path

1. Load the drawing STEP6 from the Example subdirectory of the AutoTrack directory.

2. Zoom to extents and then zoom on the green rectangle.

3. Select any line of the path that starts at the point marked B.

5. Select “Report 0004: Clearance Envelope” from the drop down list.

6. Tick Report visible to show the new report.

7. Tick Exclusively to hide all other reports.

8. Untick Construction Lines visible to hide the construction lines.

9. Click Next until you get to the Symbols page.
10. Tick I want to display symbols as follows.

11. Change the spacing to 5m.

12. Click Next to go to the Path Annotation page.

13. Untick At a spacing of to hide the path identifiers.

14. Click Next until you get to the Finish page.

15. Click Finish to close the wizard and apply the changes.

16. Finally freeze the layer MARKERB to remove the guides.

17. You have just added direction arrows and a 300mm clearance envelope and removed construction lines.

18. Load drawing STEP7 to see what your path should look like.
Step 7: Creating a new vehicle using the wizard

1. Load the drawing STEP7 from the Example subdirectory of the AutoTrack directory.

2. Click the Vehicle Library button on the AutoTrack toolbar. The Library Explorer will appear.

3. Highlight the Pool and click the Vehicle Wizard button at the top of the Vehicle Explorer. The Vehicle Wizard will appear.

4. Type Example in Vehicle name field and change the Vehicle type to Articulated vehicle.
5. Set the **Number of units** to 2.

6. Click **Next**.

![Vehicle Wizard: Tractor Axles tab](image)

Vehicle Wizard: Tractor Axles tab

7. Leave the number of axles for both front and rear set to 1 and enter a **Track width** of 2.5m for both axles (NOTE THE UNITS).

8. Click **Next**.

![Vehicle Wizard: Tractor Wheelbase tab](image)

Vehicle Wizard: Tractor Wheelbase tab

9. Enter a **Wheelbase** of 3.5m. Notice how the diagram is drawing the vehicle as we enter values.

10. Click **Next**.
11. The default steering details are fine so click Next.

12. Select Turning radius measured kerb to kerb and enter a value of 11.0m in the Minimum turning circle radius.

13. Click Next.
14. Leave the coupling Offset set at zero but enter a Maximum articulation angle of 80deg.

15. Click Next.

16. Enter a Body length of 5.4m, a Body width of 2.5m and a Rear overhang of 1.0m. Set the Body style to Articulated Vehicle Tractor (Medium).

17. Click Next.
18. Leave the trailer **Number of front axles** set to 0 but set the **Number of rear axles** to 2. Enter a **Track width** of 2.5m. Set the number of wheels on each axle to 4, i.e. 2 each side.

19. Click **Next**.

20. Enter a trailer **Wheelbase** of 7.0m and overwrite the default **Rear axle spacing** with 1.4m.

21. Click **Next**.
Vehicle Wizard: Trailer Couplings tab

22. No changes here.

23. Click Next.

Vehicle Wizard: Trailer Body tab

24. Enter a Body length of 10.5m, a Body width of 2.5m and a Rear overhang of 2.2m. Set the Body style to Articulated Vehicle Semi-trailer (Large).

25. Click Next and then Finish.

26. Click the Show Elevation button on the Vehicle Diagram to see what your vehicle looks like.
27. You will be returned to the Library Explorer and your new vehicle will be listed in the Pool. Double click on the new vehicle and try driving it.

28. Load drawing STEP8 to see what your vehicle should look like.
Step 8: Editing a vehicle using the advanced editor

1. Load the drawing STEP8 from the Example subdirectory of the AutoTrack directory.

2. Click the **Vehicle Library** button on the AutoTrack toolbar. The Library Explorer will appear.

3. Find the library **US Vehicles** and click the + symbol beside it. The library will expand to show the vehicle groups contained within it.

4. Find the vehicle group called **CALTRANS Design Vehicle** and click the + symbol beside that.

5. Highlight the **STAA Design Vehicle (18m MTCR)**, right click and select **Edit a copy** from the menu. The Vehicle Wizard will appear.
6. Click the Advanced button. The Vehicle Details dialog will appear.

7. Highlight the trailer and click the Edit button. The Unit Details dialog will appear.
8. Click the **Rear Axles** tab.

9. Click the **New** button to add a third axle identical to the existing two. Notice the vehicle diagram updates.

10. Now click on the **Unit** tab.

11. Change the **Innermost Rear Axle** offset to 11.0m.

12. Click **OK** to confirm the Unit Details changes and then **OK** again to confirm the Vehicle Details changes.

13. You have just modified an existing vehicle by adding a third rear axle to the trailer.

14. Load drawing STEP9 to see what your vehicle should look like.
Troubleshooting

This section should help you to solve common problems. If you have a problem that is not listed check our web site http://www.savoy.co.uk where we list known problems, or contact us at the address at the front of this manual.

Why can I not see the AutoTrack menu or toolbar

AutoCAD version

The AutoTrack menu should be visible on the AutoCAD menu bar. If it is not then follow the advice given in the section entitled Configuring AutoCAD manually. If you have the AutoTrack menu group loaded but you have closed the AutoTrack main toolbar, then select Show Toolbar from the AutoTrack drop down menu.

MicroStation version

The AutoTrack menu should be visible on the Applications menu. If it is not then follow the advice given in the section entitled Configuring MicroStation manually.

Why is my vehicle not visible

You may have your drawing units set incorrectly. For example if your drawing is in millimetres and you have configured AutoTrack for metres the vehicle will appear 1000 times too small and will probably be invisible. Conversely, if your drawing is in metres and you have set up AutoTrack for millimetres your vehicle will appear so large that only part (or none) of the outline is visible on screen.

Refer to Drawing Settings: Scale.

Why is part of my manoeuvre just a line

If part of a manoeuvre cannot be completed within the capabilities of the vehicle, a line is drawn connecting all the target points from the last acceptable location.

There are several reasons for this, your design speed may be too high, you may have restrictions on steering or articulation limits or rates, or you may just be trying to perform an unreasonably tight turn.

Select the path and click the Properties button. The Status box at the bottom of the Path tab should display the cause of the error.
How can I stop the vehicle jack-knifing when reversing using Manual Drive

Unfortunately, reversing an articulated lorry is inherently tricky and if there is more than one articulation point it is virtually impossible.

Since the driving algorithm is the same forwards as reverse, you could try positioning the vehicle at the end of your manoeuvre and driving forwards. However, this may not be much help if you are performing a compound manoeuvre with forwards and reverse elements. In this case you could try using AutoDrive.

How can I stop my vehicle jack-knifing when reversing using AutoDrive

AutoDrive generally makes reversing articulated vehicles much easier than the other drive modes. However, as with the other modes (and indeed real life) vehicles with more than two spines remain almost impossible to reverse. Reversing manoeuvres with semi-trailer articulated vehicles can be considerably improved by reducing the design speed or lock to lock distance. Disabling turn limits completely gives the best and smoothest path of all.

Why does my vehicle not appear as it should

Are you using the correct units for all parts of the vehicle. For example, if you specify an axle spacing of 1200mm when the current vehicle definition units are metres the second and subsequent axles will be a very long way from the rest of the vehicle! The current vehicle definition units are displayed at the top of the Unit Details dialog.

How can I correct a vehicle that has over-articulated while travelling forwards

Generally a vehicle over-articulates when you try to turn the tractor unit too fast. If you have space then you should try making the turn less severe. If not then you need to look at where the vehicle is failing and try to perform the manoeuvre anticipating that situation by starting a turn earlier or even possibly turning in the opposite direction briefly.

Other options include using Hands Off mode in Manual Drive or using AutoDrive Bearing to straighten the tractor more rapidly, and on the same theme, you could consider disabling turn rate limits which again would allow you to straighten the tractor much faster.

If all else fails and you have applied articulation limits then you may have to consider relaxing them if this is reasonable.

Why does my vehicle not turn when I am using AutoDrive

Assuming that your vehicle parameters are correct then consider the following:-
If you have turn rate limited then you may have either set a very high design speed or a very large lock to lock distance. Alternatively have you limited the maximum steering lock too much. Refer to Drawing Settings: Model (not Light Rail version).

Finally, make sure that Ortho mode is switched off in AutoCAD.

Why has my envelope gone berserk

The envelope report cannot cope with vehicles turning so tightly that they impinge on themselves. Under these circumstances the report may fail. There is no solution except perhaps to consider using the Loci report instead.

How can I remove all AutoTrack data from my drawing

AutoCAD version

To remove all AutoTrack data from a drawing in AutoCAD select Purge AutoTrack from the AutoTrack, Utilities drop down menu or type the command PURGEAUTOTRACK on the command line. (See also Purging AutoTrack data (Purge AutoTrack dialog)).

MicroStation version

To remove all AutoTrack data from a drawing in MicroStation select Purge AutoTrack from the AutoTrack, Utilities drop down menu or select Key in from the Utilities menu. The Key in dialog will appear. Select ATRACK from the first column and PURGE from the second and then click Key in. (See also Purging AutoTrack data (Purge AutoTrack dialog)).

Why do my layers not appear and disappear correctly (AutoCAD version only)

Data in blocks or XREFs that are nested more than one level may sometimes need a REGEN to redisplay correctly following a layer state change.

Why can I not see my AutoTrack paths when I load my drawing into another copy of AutoCAD (AutoCAD version only)

Probably because AutoTrack is not installed.

Refer to Viewing AutoTrack paths in AutoCAD if you don’t have AutoTrack.

Why does Follow not follow my line accurately

This is only a problem if you are trying to generate an editable path using Follow. Like all the AutoTrack drive modes, by default Follow obeys all the current settings, including design speed, dynamics limits, and transition curve requirements (limits on steering rates). This means that there will be occasions when Follow is unable to follow the line precisely.
In this event if you have the Follow setting **Follow line as closely as possible** ticked it will do the best it can. Even then it may be unable to follow as closely as you would wish. You may remove one or more of the limiting settings and this may allow the vehicle to follow the line. Try disabling **Limit forward turn** on the **Speed** tab and / or disabling **Limit turning for dynamic effects** on the **Dynamics** tab. If all else fails change your Follow settings to generate a non-editable path. See System Settings: Follow Drive (not Light Rail version).

Why does my vehicle oscillate when I use Follow to follow a line

This is only a problem if you are trying to generate an editable path using Follow. In this case Follow works best with tracking points close to the steered wheels. The further back your tracking point the harder it is for Follow to stay on the line. This is because moving the point far away from the steering makes it very sensitive to steering changes. Try using a forward tracking point. If all else fails change your Follow settings to generate a non-editable path. See System Settings: Follow Drive (not Light Rail version).

Why does my path disappear when I stop driving in MicroStation

There could be many reasons for this, for example, the level on which the path is being created may be switched off (in the view in which you are working), or you may have the Fast Cells View Attribute enabled.

Why does my path disappear when I stop driving in AutoCAD

There could be many reasons for this, for example, the layer on which the path is being created may be switched off or frozen.

Why does AutoTrack not autoload some of the Savoy vehicle libraries

AutoTrack will only autoload libraries which you are authorised to access, i.e. that you have purchased. You can open the library explicitly in the Library Explorer dialog but you will still only be allowed read only access if you have not purchased the library.

Why do my vehicle libraries take so long to load

When the vehicle libraries are loaded various validation processes are run that require extra memory. This is not usually a problem with the normal vehicle or tram libraries but can be a problem with the aircraft library. The difference is so marked that whilst it may take several minutes to load the aircraft library on a computer with 256MB of memory, the same library loads in seconds if the memory is increased to 512MB. We recommend at least 512MB of memory if you are using the aircraft library but the more the merrier.
How can I remove a vehicle profile

See To remove a vehicle details report.

Why are my report colour changes not visible

You may have multiple reports set up such that a later report is overwriting an earlier one. For example, if a path has two active reports defined, Report 0001 and Report 0002. If Report 0001 contains a blue body envelope and Report 0002 contains a red body envelope then the body envelope will always appear red.

How can I stop AutoTrack automatically checking for updates

Go to Settings, click on the Updates page and untick Check for updates automatically on startup. If you just want AutoTrack to check less frequently then change the frequency instead. Note that if you do disable automatic checking you can still check for updates periodically using the Check for updates now button.

Why does my animation movie file not play on other computers

If you use a file compression codec when creating an AVI file then the file will only play back on computers which also have that codec installed.
Vehicle Libraries

The following vehicle libraries are provided with AutoTrack:-
Australian Design Vehicle Library (AU_xxx.ATL)
Austrian Design Vehicle Library (AT_xxx.ATL)
British Design Vehicle Library (GB_xxx.ATL)
Canadian Design Vehicle Library (CA_xxx.ATL)
German Design Vehicle Library (DE_xxx.ATL)
New Zealand Design Vehicle Library (NZ_xxx.ATL)
Norwegian Design Vehicle Library (NO_xxx.ATL)
South African Design Vehicle Library (ZA_xxx.ATL)
Swedish Design Vehicle Library (SE_xxx.ATL)
Swiss Design Vehicle Library (CH_xxx.ATL)
European Vehicle Library (EUR_xxx.ATL)
Specialised Vehicles Library (SPC_xxx.ATL)
Aircraft Library (AIR_xxx.ATL)
Tram Library (TRM_xxx.ATL)

The vehicles contained within each of these are listed in the following sections together with brief notes.

Important
We have worked hard to establish accurate data for the vehicles contained in this library. However, we nevertheless recommend that critical dimensions be checked carefully with other sources. If you do find any errors or inconsistencies then please report them to Savoy Computing Services Ltd on +44 (0)1580 720 011 so that we may advise others.
The Australian vehicle library contains data on vehicles specified by Austroads and Standards Australia.

The Austroads design vehicle details are extracted from Austroads Publication No. AP-G34/06, "Austroads Design Vehicles and Turning Path Templates". (This supersedes Austroads Publication No. AP-34/95, "Design Vehicles and Turning Path Templates").

Australian Standards vehicles have been sourced as follows:
- AS 2890.2-2002 – Parking facilities, Part 2: Off street commercial vehicle facilities

For further information on these vehicles and their use for design purposes, the user of this software is urged to consult the above publications directly.

Australian Design Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Design/Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austroads 1995 Vehicles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Car (5.0m)</td>
<td>Design</td>
<td>5000</td>
<td>1900</td>
</tr>
<tr>
<td>Service Vehicle (8.8m)</td>
<td>Design</td>
<td>8800</td>
<td>2500</td>
</tr>
<tr>
<td>Single Unit Truck/Bus (12.5m)</td>
<td>Design</td>
<td>12500</td>
<td>2500</td>
</tr>
<tr>
<td>Prime Mover & Semi-Trailer (19.0m)</td>
<td>Design</td>
<td>19000</td>
<td>2500</td>
</tr>
<tr>
<td>Long Rigid Bus (14.5m)</td>
<td>Restricted Access</td>
<td>14500</td>
<td>2500</td>
</tr>
<tr>
<td>Articulated Bus (19.0m)</td>
<td>Restricted Access</td>
<td>19000</td>
<td>2500</td>
</tr>
<tr>
<td>B-Double (25.0m)</td>
<td>Restricted Access</td>
<td>25000</td>
<td>2500</td>
</tr>
<tr>
<td>Prime Mover & Long Semi-Trailer (25.0m)</td>
<td>Restricted Access</td>
<td>25000</td>
<td>3000</td>
</tr>
<tr>
<td>Type 1 (Double) Road Train (36.0m)</td>
<td>Restricted Access</td>
<td>36000</td>
<td>2500</td>
</tr>
<tr>
<td>Type 2 (Triple) Road Train (53.0m)</td>
<td>Restricted Access</td>
<td>53000</td>
<td>2500</td>
</tr>
</tbody>
</table>

<p>| Austroads 2006 Vehicles | | | |
| Car/van vehicle (5.2 m) | Design | 5200 | 1940 |
| Service Vehicle (8.8 m) | Design | 8800 | 2500 |
| Single Unit Truck/Bus (12.5 m) | Design | 12500 | 2500 |
| Single Articulated (19.0 m) | Design | 19000 | 2500 |
| Long Single Articulated (25.0 m) | Restricted Access | 25000 | 3000 |
| Long Rigid Bus (14.5 m) | Restricted Access | 14500 | 2500 |
| Articulated Bus (19.0 m) | Restricted Access | 19000 | 2500 |
| B-Double (25.0 m) | Restricted Access | 25000 | 2500 |
| B-Double (26.0 m) | Restricted Access | 26000 | 2500 |
| A-Double (36.2 m) | Restricted Access | 36200 | 2500 |</p>
<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-Triple (36.5 m)</td>
<td>/ Checking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted Access</td>
<td>36500</td>
</tr>
<tr>
<td></td>
<td>/ Checking</td>
<td>2500</td>
</tr>
<tr>
<td>A-Triple (53.4 m)</td>
<td>Restricted Access</td>
<td>53400</td>
</tr>
<tr>
<td></td>
<td>/ Checking</td>
<td>2500</td>
</tr>
</tbody>
</table>

Standards Australia Vehicles

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B85 Vehicle</td>
<td>AS 2890.1-2004</td>
<td>4910</td>
<td>1870</td>
</tr>
<tr>
<td>B99 Vehicle</td>
<td>AS 2890.1-2004</td>
<td>5200</td>
<td>1940</td>
</tr>
<tr>
<td>SRV – Small Rigid Vehicle</td>
<td>AS 2890.2-2002</td>
<td>6400</td>
<td>2330</td>
</tr>
<tr>
<td>MRV – Medium Rigid Vehicle</td>
<td>AS 2890.2-2002</td>
<td>8800</td>
<td>2500</td>
</tr>
<tr>
<td>HRV – Heavy Rigid Vehicle</td>
<td>AS 2890.2-2002</td>
<td>12500</td>
<td>2500</td>
</tr>
<tr>
<td>AV – Articulated Vehicle</td>
<td>AS 2890.2-2002</td>
<td>19000</td>
<td>2500</td>
</tr>
</tbody>
</table>

Australian Design Vehicle Library: Minimum Turning Circle Radii

Road and Intersection Design

Austroads Publication No. AP-G34/06, "Australian Design Vehicles and Turning Path Templates" gives guidance on the minimum turning radii to use for road design purposes. It should be noted that these vary according to the design speed and the user is advised to consult this document for further guidance on this matter. For some vehicles, the tightest radii are only allowable at a mandatory stop.

Generally, the smallest radius that does not require a mandatory stop is given as the minimum radius for the library vehicles. However, for the convenience of users, as well as to highlight this, a separate version of each vehicle with a mandatory stop radius is included in the library, where the versions are identical to each other in all respects except for their turning ability.

In contrast with the 1995 version, we have not included a set of "Realistic Minimum Radius" vehicles in the 2006 Austroads library, and suggest the use of the "Mandatory Stop" versions instead. However, we note two concerns with the published data in this regard:

(i) A template is included on the Austroads 2006 CD (although not listed in the document) for a 9m turn radius of the Single Unit Truck/Bus that we believe is not feasible. From the geometry of the vehicle, the maximum (inside wheel) turn angle required to achieve this turn is estimated to be 63.7 degrees which is regarded as considerably beyond the ability of vehicles of this type.

(ii) A template is included on the CD (although not listed in the book) for a 9m turn radius of the Single articulated vehicle (19m). From the geometry of the prime-mover, a maximum (inside wheel) turn angle required to achieve this turn is estimated to be 47.4 degrees which is regarded as somewhat unconservative.

Off-Street Parking Facilities

Standards Australia gives guidance on minimum turning radii for off-street (parking facility) design purposes. For cars, AS/NZS 2890.1:2004 recommends different minimum radii for parking manoeuvres compared to those for design of circulating roadways, and both versions of the
vehicles are given in the library. For commercial vehicles, the minimum radii used are those specified in AS 2890.2-2002.

Previous (1995) Austroads Library

For the convenience of users, we have retained the superseded vehicle library based on the 1995 Austroads Publication No. AP-34/95, "Design Vehicles and Turning Path Templates". This publication differs from the 2006 Edition in that it provides guidance on "Absolute Minimum" radii and "Desirable Minimum" radii for use in designing roads and intersections rather than as described above.

The 1995 Austroads library included three versions of each of the Austroads vehicles, where the versions were identical to each other in all respects except for their turning ability. "Absolute Minimum Radius" and "Desirable Minimum Radius" versions were provided in accordance with the recommendations of the 1995 Austroads document for road design purposes.

However, since even the "Absolute Minimum" radii recommended by Austroads were considered to be conservative in several instances, we also included a third, "Realistic Minimum Turning Radius"; version of the Austroads vehicles. For this "Realistic" set of vehicles, we relied on provisional (maximum steering angle) data for Austroads vehicles provided by VicRoads (see reference (iii) below), backed up by sample checks of manufacturer’s data for typical vehicles of the classes included in the library.

Users should note that the "Realistic Minimum Turning Radius" versions of the Austroads vehicles were intended for use only in situations where the realistic, tightest turning performance of vehicles was of interest, such as in situations involving access to an already existing site.

Australian Design Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

Australian Design Vehicle Library: Maximum Articulation Angles

The maximum articulation angles between trailers and either prime movers or other trailers represent realistic possible maxima and are not necessarily the recommended maximum articulation angles to be used in any particular design situation. The values given were based on provisional data for Austroads vehicles provided by VicRoads (See Reference (iii) below).

Australian Design Vehicle Library: Axle layouts & wheel sizes

All wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.

Note that, although the details of all axles and tyres are included in each vehicle’s specification, AutoTrack’s calculations are based on single
“effective” axles. The position of each effective axle is automatically calculated by AutoTrack as being at the centroid of an axle group, however, the user should note that this position may not give conservative swept paths due to the effects of road surface, tyre condition, vehicle loading and even driving technique. The user’s attention is drawn to the comments made under Error! Reference source not found. in the Theory section.

Australian Design Vehicle Library: Kingpin Offsets

In cases where a component is used such that it is not towing another component the kingpin position may be left as zero. If you use a component in a towing role you should check the kingpin (or towbar) location.

Australian Design Vehicle Library: Vertical Clearance

Both Austroads and Standards Australia give guidance of maximum height, vertical clearance and ground clearance. Both refer to Australian Design Rule 43 (see reference (vi) below) for ground clearance but it should be noted that Standards Australia has adapted this data, thus similar vehicles have different ground clearance profiles under the two standards.

Since, in each case, the ground clearance data appears rather different to a normal vehicle profile, separate vertical clearance checking models are provided showing the recommended ground clearance to be used for design purposes. Where headroom figures are provided that are different to the maximum heights of the vehicles, separate clearance lines are included in the models.

Australian Vehicle Library: References

(iii) "Provisional vehicle details for Austroads vehicle Library", Private Communication to former Australasian distributor of AutoTrack, Finite Element Analysis (Australia) Pty Ltd, from Traffic and Road Use Management Department, VicRoads, 11 May 1994.
Austrian Design Vehicle Library (AT_xxx.ATL)

The data contained within this library has been obtained from “Heft 502: Aktualisierung von Schleppkurven-Schablonen”, published by Bundesministerium fur Verkehr, Innovation und Technologie (see reference (ii) below) and “Knoten RVS 3.42: Plangleiche Knoten – Kreuzungen, T-Kreuzungen”, published by the Österreichische Forschungsgemeinschaft Strabe und Verkehr (see reference (i) below).

For further information on these vehicles and their use for design purposes, the user of this software is urged to consult these publications.

Austrian Design Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus-12m</td>
<td>Heft 502</td>
<td>12000</td>
<td>2500</td>
</tr>
<tr>
<td>Bus-15m</td>
<td>Heft 502</td>
<td>15000</td>
<td>2500</td>
</tr>
<tr>
<td>Lkw mit Anghanger</td>
<td>Heft 502</td>
<td>18750</td>
<td>2600</td>
</tr>
<tr>
<td>Lkw-12m</td>
<td>Heft 502</td>
<td>12000</td>
<td>2600</td>
</tr>
<tr>
<td>Lkw-9m</td>
<td>Heft 502</td>
<td>9000</td>
<td>2300</td>
</tr>
<tr>
<td>Pkw-gr</td>
<td>Heft 502</td>
<td>5000</td>
<td>1900</td>
</tr>
<tr>
<td>Sattelkzf</td>
<td>Heft 502</td>
<td>16500</td>
<td>2600</td>
</tr>
</tbody>
</table>

Austrian Design Vehicle Library: Turning circles

Turning capabilities are expressed in the source documents as kerb-to-kerb radii.

Austrian Design Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

Austrian Design Vehicle Library: Maximum Articulation Angles

In most cases the maximum articulation angles between tractor and trailer have been set at 90 degrees. We believe that whilst angles can exceed this figure for some vehicles this is a generally a reasonable compromise. If you have a reliable source that suggests an alternative value we recommend that you use that.

Austrian Design Vehicle Library: Axle layouts & wheel sizes

All wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.
Austrian Design Vehicle Library: Kingpin offsets

In many cases where a component is used such that it is not towing another component the kingpin position is left as zero. If you use a component in a towing role you should check the kingpin (or towbar) location.

Austrian Design Vehicle Library: References

The data for the Freight Transport Association (FTA) 1983 and 1998 design vehicles was extracted from "Designing for Deliveries" published by Freight Transport Association Ltd (see references (i) and (ii) below). The data for the DB32 design vehicles was extracted from "Design Bulletin 32", published by The Department of the Environment (see reference (iii) below. The data for the TRRL design vehicles extracted from "Goods vehicle manoeuvres: a computer simulation and its application to roundabout design", published by TRRL (see reference (iv) below).

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB32 Fire Appliance</td>
<td>8680</td>
<td>2180</td>
</tr>
<tr>
<td>DB32 Pantechnicon</td>
<td>9570</td>
<td>2520</td>
</tr>
<tr>
<td>DB32 Private Car</td>
<td>4223</td>
<td>1715</td>
</tr>
<tr>
<td>DB32 Refuse Vehicle</td>
<td>7900</td>
<td>2400</td>
</tr>
<tr>
<td>FTA Design Articulated Vehicle (1983)</td>
<td>15500</td>
<td>2500</td>
</tr>
<tr>
<td>FTA Design Drawbar Vehicle (1983)</td>
<td>18000</td>
<td>2500</td>
</tr>
<tr>
<td>FTA Design Rigid Vehicle (1983)</td>
<td>10000</td>
<td>2500</td>
</tr>
<tr>
<td>FTA Design Articulated Vehicle (1998)</td>
<td>16500</td>
<td>2550</td>
</tr>
<tr>
<td>FTA Design Drawbar Vehicle (1998)</td>
<td>18750</td>
<td>2550</td>
</tr>
<tr>
<td>FTA Design 15/16T Rigid Vehicle (1998)</td>
<td>10000</td>
<td>2550</td>
</tr>
<tr>
<td>FTA Design 7.5T Rigid Vehicle (1998)</td>
<td>7170</td>
<td>2300</td>
</tr>
<tr>
<td>TRRL 662 Articulated Combination</td>
<td>TRRL662 (1981)</td>
<td>15500</td>
</tr>
<tr>
<td>TRRL 662 Drawbar Train</td>
<td>TRRL662 (1981)</td>
<td>17750</td>
</tr>
<tr>
<td>TRRL 662 Rigid Public Service Vehicle</td>
<td>TRRL662 (1981)</td>
<td>12000</td>
</tr>
</tbody>
</table>

British Design Vehicle Library: Turning circles

All turning circle radii are expressed in the source documents as kerb-to-kerb values.

British Design Vehicle Library: Lock to lock time

The 1998 FTA design vehicles use a lock to lock figure of three seconds as agreed with FTA and as used to generate the templates associated with the 1998 document, "Designing for Deliveries". In the absence of reliable lock to lock data for the other design vehicles (including the earlier 1983 FTA vehicles) we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

British Design Vehicle Library: Maximum Articulation Angles

The maximum articulation angles for the 1998 FTA vehicles were specified by FTA. In most other cases the maximum articulation angles between tractor and trailer have been set at 90 degrees. We believe that whilst angles can exceed this figure for some vehicles this is a generally
a reasonable compromise. If you have a reliable source that suggests an alternative value we recommend that you use that.

British Design Vehicle Library: Axle layouts & wheel sizes

The spacing of the axles for the 1998 FTA design vehicles was specified by FTA. All wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.

British Design Vehicle Library: Kingpin offsets

Kingpin locations are as specified in the source documents.

British Design Vehicle Library: References

Canadian Design Vehicle Library (CA_xxx.ATL)

The data contained within this library has been obtained from the “Manual of Geometric Design Standards for Canadian Roads” and the “Geometric Design Guide for Canadian Roads” both published by the Transportation Association of Canada (see references (i) and (ii) below).

For further information on these vehicles and their use for design purposes, the user of this software is urged to consult these publications.

Canadian Design Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car Design Vehicle</td>
<td>TAC (1986)</td>
<td>5800</td>
<td>2100</td>
</tr>
<tr>
<td>Car / RT Design Vehicle</td>
<td>TAC (1986)</td>
<td>14900</td>
<td>2400</td>
</tr>
<tr>
<td>SU Design Vehicle</td>
<td>TAC (1986)</td>
<td>9100</td>
<td>2600</td>
</tr>
<tr>
<td>Bus Design Vehicle</td>
<td>TAC (1986)</td>
<td>12100</td>
<td>2600</td>
</tr>
<tr>
<td>I-Bus Design Vehicle</td>
<td>TAC (1986)</td>
<td>12200</td>
<td>2600</td>
</tr>
<tr>
<td>A-Bus Design Vehicle</td>
<td>TAC (1986)</td>
<td>18400</td>
<td>2600</td>
</tr>
<tr>
<td>TST Design Vehicle</td>
<td>TAC (1986)</td>
<td>20640</td>
<td>2600</td>
</tr>
<tr>
<td>A-Train Design Vehicle</td>
<td>TAC (1986)</td>
<td>23000</td>
<td>2600</td>
</tr>
<tr>
<td>B-Train Design Vehicle</td>
<td>TAC (1986)</td>
<td>25000</td>
<td>2600</td>
</tr>
<tr>
<td>Passenger Car (P)</td>
<td>TAC (1999)</td>
<td>5600</td>
<td>2000</td>
</tr>
<tr>
<td>Light Single Unit Truck (LSU)</td>
<td>TAC (1999)</td>
<td>6400</td>
<td>2600</td>
</tr>
<tr>
<td>Medium Single Unit Truck (MSU)</td>
<td>TAC (1999)</td>
<td>10000</td>
<td>2600</td>
</tr>
<tr>
<td>Heavy Single Unit Truck (HSU)</td>
<td>TAC (1999)</td>
<td>11500</td>
<td>2600</td>
</tr>
<tr>
<td>WB-19 Tractor-Semi trailer</td>
<td>TAC (1999)</td>
<td>20700</td>
<td>2600</td>
</tr>
<tr>
<td>WB-20 Tractor-Semi trailer</td>
<td>TAC (1999)</td>
<td>22700</td>
<td>2600</td>
</tr>
<tr>
<td>A-Train Double (ATD)</td>
<td>TAC (1999)</td>
<td>24500</td>
<td>2600</td>
</tr>
<tr>
<td>B-Train Double (BTD)</td>
<td>TAC (1999)</td>
<td>25000</td>
<td>2600</td>
</tr>
<tr>
<td>Standard Single Unit Bus (B-12)</td>
<td>TAC (1999)</td>
<td>12200</td>
<td>2400</td>
</tr>
<tr>
<td>Articulated Bus (A-BUS)</td>
<td>TAC (1999)</td>
<td>18300</td>
<td>2400</td>
</tr>
<tr>
<td>Intercity Bus (I-BUS)</td>
<td>TAC (1999)</td>
<td>14000</td>
<td>2400</td>
</tr>
</tbody>
</table>

Canadian Design Vehicle Library: Turning circles

In some cases the kerb-to-kerb turning circle radius was not available and a value has been calculated from the wall-to-wall turning circle radius.

Canadian Design Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.
Canadian Design Vehicle Library: Maximum Articulation Angles

In most cases the maximum articulation angles between tractor and trailer have been set at 90 degrees. We believe that whilst angles can exceed this figure for some vehicles this is a generally a reasonable compromise. We have been advised that the tractor / trailer and drawbar / trailer articulation angles on the A-Train should be set to 50 degrees and the articulation angle on the A-BUS should be 60 degrees. Again, if you have a reliable source that suggests an alternative value we recommend that you use that.

Canadian Design Vehicle Library: Axle layouts & wheel sizes

All wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.

Canadian Design Vehicle Library: Kingpin offsets

In many cases where a component is used such that it is not towing another component the kingpin position is left as zero. If you use a component in a towing role you should check the kingpin (or towbar) location.

Canadian Design Vehicle Library: References

German Design Vehicle Library (DE_xxx.ATL)

The data contained within this library has been obtained from "Bemessungsfahrzeuge und Schleppkurven zur Überprüfung der Befahrbarkeit von Verkehrsflächen" and "Empfehlungen für die Anlage von Hauptverkehrsstrassen" both published by FGSV (see references (i) and (ii) below).

For further information on these vehicles and their use for design purposes, the user of this software is urged to consult these publications.

German Design Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelenkbus</td>
<td>FGSV 2001</td>
<td>17990</td>
<td>2500</td>
</tr>
<tr>
<td>Grober Lkw (3-achsig)</td>
<td>FGSV 2001</td>
<td>10100</td>
<td>2500</td>
</tr>
<tr>
<td>Kleiner Lkw (2-achsig)</td>
<td>FGSV 2001</td>
<td>9460</td>
<td>2290</td>
</tr>
<tr>
<td>Lastzug</td>
<td>FGSV 2001</td>
<td>18710</td>
<td>2500</td>
</tr>
<tr>
<td>Mullfahrzeuge (2-achsig)</td>
<td>FGSV 2001</td>
<td>9030</td>
<td>2500</td>
</tr>
<tr>
<td>Mullfahrzeuge (3-achsig mit Nachlauffachse)</td>
<td>FGSV 2001</td>
<td>9950</td>
<td>2500</td>
</tr>
<tr>
<td>Mullfahrzeuge (3-achsig)</td>
<td>FGSV 2001</td>
<td>9900</td>
<td>2500</td>
</tr>
<tr>
<td>Personenkraftwagen</td>
<td>FGSV 2001</td>
<td>4740</td>
<td>1760</td>
</tr>
<tr>
<td>Reisebus / Linienbus (L=12.0m)</td>
<td>FGSV 2001</td>
<td>12000</td>
<td>2500</td>
</tr>
<tr>
<td>Reisebus / Linienbus (L=13.70m)</td>
<td>FGSV 2001</td>
<td>13700</td>
<td>2500</td>
</tr>
<tr>
<td>Reisebus / Linienbus (L=15.00m)</td>
<td>FGSV 2001</td>
<td>15000</td>
<td>2500</td>
</tr>
<tr>
<td>Sattelzug</td>
<td>FGSV 2001</td>
<td>16500</td>
<td>2500</td>
</tr>
<tr>
<td>Transporter / Wohnmobil</td>
<td>FGSV 2001</td>
<td>6890</td>
<td>2170</td>
</tr>
</tbody>
</table>

German Design Vehicle Library: Turning circles

All turning circle radii are expressed in the source documents as wall-to-wall values.

German Design Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

German Design Vehicle Library: Maximum Articulation Angles

The maximum articulation angles are as specified in the source documents.
German Design Vehicle Library: Axle layouts & wheel sizes

All wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.

German Design Vehicle Library: Kingpin offsets

Kingpin locations are as specified in the source documents.

German Design Vehicle Library: References

The data for the Netherlands design vehicles (ASVV) was extracted from “Recommendations for traffic provisions in built up areas (ASVV)” published by CROW (see reference (i) below).

Netherlands Design Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROW Design Passenger Car</td>
<td>CROW 1998</td>
<td>4580</td>
<td>1750</td>
</tr>
<tr>
<td>CROW Design Bus</td>
<td>CROW 1998</td>
<td>11800</td>
<td>2600</td>
</tr>
<tr>
<td>CROW Design Goods Vehicle</td>
<td>CROW 1998</td>
<td>9000</td>
<td>2450</td>
</tr>
<tr>
<td>CROW Design Goods Vehicle with Trailer</td>
<td>CROW 1998</td>
<td>18500</td>
<td>2600</td>
</tr>
<tr>
<td>CROW Design Truck with Trailer</td>
<td>CROW 1998</td>
<td>16170</td>
<td>2600</td>
</tr>
</tbody>
</table>

Netherlands Design Vehicle Library: Turning circles

All turning circle radii are expressed in the source documents as wall-to-wall values.

Netherlands Design Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

Netherlands Design Vehicle Library: Maximum Articulation Angles

In most cases the maximum articulation angles between tractor and trailer have been set at 90 degrees. We believe that whilst angles can exceed this figure for some vehicles this is a generally a reasonable compromise. Again, if you have a reliable source that suggests an alternative value we recommend that you use that.

Netherlands Design Vehicle Library: Axle layouts & wheel sizes

The spacing of the axles on some multi-axle configurations have been estimated. This does not affect the steering characteristics of the vehicle but if wheel path is critical you may wish to check the spacing from your own sources. Almost all wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.
Netherlands Design Vehicle Library: Kingpin offsets

In many cases where a component is used such that it is not towing another component the kingpin position is left as zero. If you use a component in a towing role you should check the kingpin (or towbar) location.

Netherlands Design Vehicle Library: References

(i) “Recommendations for traffic provisions in built up areas”, CROW (1998).
New Zealand Design Vehicle Library (NZ_xxx.ATL)

The New Zealand library vehicles are sourced from publications by Standards New Zealand, Transit New Zealand, and Land Transport Safety Authority (LTSA). For the convenience of users, these are grouped in the library according to source publication.

The data for the B99 and B85 Design Cars were obtained from “AS/NZS2890.1:2004, Parking Facilities, Part 1: Off-street car parking”. (see reference (i) below).

The 90 percentile car was sourced from the LTSA "NZ On-road Tracking Curves" (see reference (ii)), whilst the commercial vehicles were sourced from both the LTSA "NZ On-road Tracking Curves", and the Transit NZ publication "Site Design for Heavy Vehicles" (see reference (iii)).

For further information on these vehicles and their use for design purposes, the user of this software is urged to consult these publications directly.

New Zealand Design Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Rigid Truck</td>
<td>TNZ 1994</td>
<td>8000</td>
<td>2500</td>
</tr>
<tr>
<td>Midi-Bus</td>
<td>TNZ 1994</td>
<td>9300</td>
<td>2360</td>
</tr>
<tr>
<td>Large Rigid Truck</td>
<td>TNZ 1994</td>
<td>11000</td>
<td>2500</td>
</tr>
<tr>
<td>Urban City Bus</td>
<td>TNZ 1994</td>
<td>11300</td>
<td>2440</td>
</tr>
<tr>
<td>Semi-Trailer</td>
<td>TNZ 1994</td>
<td>17000</td>
<td>2500</td>
</tr>
<tr>
<td>Tour Coach</td>
<td>TNZ 1994</td>
<td>12600</td>
<td>2500</td>
</tr>
<tr>
<td>B-Train</td>
<td>TNZ 1994</td>
<td>20000</td>
<td>2500</td>
</tr>
<tr>
<td>Medium Rigid Truck</td>
<td>LTSA 1995</td>
<td>8000</td>
<td>2500</td>
</tr>
<tr>
<td>Midi-Bus</td>
<td>LTSA 1995</td>
<td>9300</td>
<td>2360</td>
</tr>
<tr>
<td>Large Rigid Truck</td>
<td>LTSA 1995</td>
<td>11000</td>
<td>2500</td>
</tr>
<tr>
<td>Urban City Bus</td>
<td>LTSA 1995</td>
<td>11300</td>
<td>2440</td>
</tr>
<tr>
<td>Semi-Trailer</td>
<td>LTSA 1995</td>
<td>17000</td>
<td>2500</td>
</tr>
<tr>
<td>Tour Coach</td>
<td>LTSA 1995</td>
<td>12600</td>
<td>2500</td>
</tr>
<tr>
<td>B-Train</td>
<td>LTSA 1995</td>
<td>20000</td>
<td>2500</td>
</tr>
<tr>
<td>90 Percentile Car (4.68m)</td>
<td>LTSA 1995</td>
<td>4680</td>
<td>1729</td>
</tr>
</tbody>
</table>

New Zealand Design Vehicle Library: Minimum Turning Circle Radii

The minimum radius to be used for any vehicle depends on the purpose for which it is being used and for the convenience of the user, the
AutoTrack New Zealand library provides versions of the library vehicles with radii appropriate to different uses.

For roading design purposes, LTSA (see reference (ii)) specifies both “Absolute Minimum” and “General Minimum” radii and versions of the LTSA vehicles with each of these radii are included in the library. In two cases, (8m Rigid Truck and B-Train), the LTSA publication also includes templates at a radius smaller than the “Absolute Minimum Radius” and versions of these vehicles with the minimum published turning capability are also included in the library. For completeness, a full set of LTSA vehicles with minimum published radii is provided.

For off-street car parking facility design purposes, Standards New Zealand gives guidance on minimum turning radii. AS/NZS 2890.1:2004 (see reference (i)) recommends different minimum radii for parking manoeuvres compared to those for design of circulating roadways, and both versions of the vehicles are given in the library.

For design of off road facilities for heavy vehicles two versions of the vehicles sourced from the Transit NZ document “Site Design for Heavy Vehicle Facilities” (ref (iii)). The first has minimum turning radii equal to the minimum published values in the Transit NZ document. However, since it appears that even these minimum published radii are conservative in some instances, we have included a second version of the Transit NZ vehicles, namely a “Realistic Minimum Turning Radius”, version. For this “Realistic Minimum Radius” set of vehicles, we have relied on provisional (maximum steering angle) data for Austroads vehicles provided by VicRoads (see reference (v) below), backed up by sample checks of manufacturer’s data for typical vehicles of the classes included in the library.

Users should note that the vehicles contained in the “Realistic Minimum Radius” group are intended for use only in situations where the realistic, tightest turning performance of vehicles is of interest, such as in situations involving access to an already existing site.

For road design, the “absolute minimum design radius” or “general minimum design radius” versions should be used in accordance with the advice of LTSA (reference (ii)) & Transit New Zealand (reference (iv)).

For on-site design, reference should also be made to the Transit NZ document (see reference (iii)) for other specified design requirements.

New Zealand Design Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

New Zealand Design Vehicle Library: Maximum Articulation Angles

The maximum articulation angles between trailers and either prime movers or other trailers are intended to represent realistic possible maxima and are not necessarily the recommended maximum articulation angles to be used in any particular design application. The values given were based on provisional data for comparable Austroads vehicles (see reference (v) below).
New Zealand Design Vehicle Library: Axle layouts & wheel sizes

Since vehicle specifications given by Transit New Zealand & LTSA (see references (iii) & (iv) below) do not include details of axle spacing or number or size of tyres per axle, assumptions have been made in this regard. The user should note, however, that the effect of these assumptions is purely cosmetic and that errors will in no way affect the swept paths generated by AutoTrack. This is because AutoTrack performs its swept path calculations on the basis of an “equivalent” or “effective” single axle (refer to Multiple axles in the Theory section). Although the positions of equivalent axles are, by default, calculated by AutoTrack, these have been explicitly specified in all cases in this implementation of the New Zealand design vehicle library.

With one exception in this library (see below), the position of an equivalent rear axle has been taken as being at the centroid of the actual rear wheels. The user should note, however, that this may not give conservative swept paths due to the effects of road surface, tyre condition, vehicle loading and even driving technique.

Note: In an exception to the above rule, the equivalent rear axle for the trailer of the Semi-Trailer (17.0 m) has been deliberately positioned 0.4 m closer to the rear of the vehicle rather than at the centroid of the rear tyres. This is as recommended by Transit New Zealand to allow for the effects of the rear-most axle in the trailer’s axle group frequently carrying more weight than the other axles of the group when the trailer is unladen (see reference (iii), page 23).

New Zealand Design Vehicle Library: Kingpin offsets

In many cases where a vehicle or trailer is specified such that it is not towing another trailer the kingpin position is left as zero. If you add a trailer to any vehicle, therefore, you should check the kingpin (or towbar) location.

New Zealand Design Vehicle Library: Vertical Clearance

In AS/NZS 2890.1:2004, Standards New Zealand gives guidance on maximum height, vertical clearance and ground clearance for cars.

Since the ground clearance data can appear rather different to a normal vehicle profile, separate vertical clearance checking models are provided showing the recommended ground clearance to be used for design purposes.

Users are urged to take great care when using any default vehicle profiles.

New Zealand Design Vehicle Library: References

(iii) "New Zealand On-Road Tracking Curves", Land Transport Safety Authority, October 1995.

(vi) "Provisional vehicle details for Austroads vehicle Library", Private Communication to former Australasian distributor of AutoTrack, Finite Element Analysis (Australia) Pty Ltd, from Traffic and Road Use Management Department, VicRoads, 11 May 1994.
The data for the Norwegian design vehicles is taken from “STF22 A04305: Revisjon av Handbok 017 Veg- og gateutforming”, published by The Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology (SINTEF) (see reference (i) below).

Norwegian Design Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B - Buss</td>
<td>Vegvesen</td>
<td>12400</td>
<td>2500</td>
</tr>
<tr>
<td>L - Lastebil</td>
<td>Vegvesen</td>
<td>11000</td>
<td>2500</td>
</tr>
<tr>
<td>LL – Liten Lastebil</td>
<td>Vegvesen</td>
<td>8000</td>
<td>2500</td>
</tr>
<tr>
<td>P – Personbil</td>
<td>Vegvesen</td>
<td>4800</td>
<td>1800</td>
</tr>
<tr>
<td>ST - Semitrailer</td>
<td>Vegvesen</td>
<td>15500</td>
<td>2500</td>
</tr>
<tr>
<td>VT - Vogntog</td>
<td>Vegvesen</td>
<td>22000</td>
<td>2500</td>
</tr>
</tbody>
</table>

Norwegian Design Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

Norwegian Design Vehicle Library: Maximum Articulation Angles

In most cases the maximum articulation angles between tractor and trailer have been set at 90 degrees. We believe that whilst angles can exceed this figure for some vehicles this is a generally a reasonable compromise. If you have a reliable source that suggests an alternative value we recommend that you use that.

Norwegian Design Vehicle Library: Axle layouts & wheel sizes

All wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.

Norwegian Design Vehicle Library: Kingpin offsets

In many cases where a component is used such that it is not towing another component the kingpin position is left as zero. If you use a component in a towing role you should check the kingpin (or towbar) location.
Norwegian Design Vehicle Library: References

South African Design Vehicle Library (ZA_xxx.ATL)

The South African design vehicle details were obtained from the publication “Geometric Design Manual” published by the South African National Roads Agency Ltd (SANRAL) (see reference (i) below).

For further information on these vehicles and their use for design purposes, the user of this software is urged to consult these publications directly.

South African Design Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Car (P)</td>
<td>SANRAL</td>
<td>4800</td>
<td>1800</td>
</tr>
<tr>
<td>Semi-trailer (WB-15)</td>
<td>SANRAL</td>
<td>17000</td>
<td>2500</td>
</tr>
<tr>
<td>Single Unit (SU)</td>
<td>SANRAL</td>
<td>9100</td>
<td>2500</td>
</tr>
<tr>
<td>Single Unit + Trailer (SU+T)</td>
<td>SANRAL</td>
<td>18600</td>
<td>2500</td>
</tr>
<tr>
<td>Single Unit Bus (BUS)</td>
<td>SANRAL</td>
<td>12300</td>
<td>2600</td>
</tr>
</tbody>
</table>

South African Design Vehicle Library: Turning circles

The turning circle radii are expressed in the source documents wall-to-wall values.

South African Design Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

South African Design Vehicle Library: Maximum Articulation Angles

In most cases the maximum articulation angles between tractor and trailer have been set at 90 degrees. We believe that whilst angles can exceed this figure for some vehicles this is a generally a reasonable compromise. Again, if you have a reliable source that suggests an alternative value we recommend that you use that.

South African Design Vehicle Library: Axle layouts & wheel sizes

The spacing of the axles on the multi-axed semi-trailer has been estimated. Since the wheelbase is quoted from the king pin to the rearmost axle, whereas the path calculation is based upon a median axle, this will affect the steering characteristics of this vehicle. If you have
a reliable source that suggests an alternative figure then use that. All wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.

South African Design Vehicle Library: Kingpin offsets

In many cases where a component is used such that it is not towing another component the kingpin position is left as zero. If you use a component in a towing role you should check the kingpin (or towbar) location.

South African Design Vehicle Library: References

Swedish Design Vehicle Library (SE_xxx.ATL)

The data contained within this library has been obtained from “Vägar och gators utformning : förord, sökindex, begreppsförklaringar, grundvärden” published by Vagverket (see reference (i) below).

For further information on these vehicles and their use for design purposes, the user of this software is urged to consult these publications.

Swedish Design Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB - Boggibuss</td>
<td>Vagverket</td>
<td>15000</td>
<td>2500</td>
</tr>
<tr>
<td>Bbsa - Boggibuss</td>
<td>Vagverket</td>
<td>15000</td>
<td>2550</td>
</tr>
<tr>
<td>Bf - Förlangd normalbuss</td>
<td>Vagverket</td>
<td>13000</td>
<td>2500</td>
</tr>
<tr>
<td>Bl - Ledbuss</td>
<td>Vagverket</td>
<td>18000</td>
<td>2500</td>
</tr>
<tr>
<td>LBm - Minibuss</td>
<td>Vagverket</td>
<td>7000</td>
<td>2200</td>
</tr>
<tr>
<td>LBn - Tunga lastbilar och normalbussar</td>
<td>Vagverket</td>
<td>12000</td>
<td>2550</td>
</tr>
<tr>
<td>Ldrift - Driftfordon</td>
<td>Vagverket</td>
<td>10950</td>
<td>4500</td>
</tr>
<tr>
<td>Lmod - Lastbil med slapvagn av modultyp</td>
<td>Vagverket</td>
<td>24600</td>
<td>2600</td>
</tr>
<tr>
<td>Los - Oljebil, sopbil</td>
<td>Vagverket</td>
<td>9400</td>
<td>2550</td>
</tr>
<tr>
<td>Lps - Lastbil med pahangsvagn eller slapvagn</td>
<td>Vagverket</td>
<td>17450</td>
<td>2600</td>
</tr>
<tr>
<td>Ls - Skogsbil</td>
<td>Vagverket</td>
<td>23325</td>
<td>2550</td>
</tr>
<tr>
<td>Lspec - Specialfordon</td>
<td>Vagverket</td>
<td>19000</td>
<td>2600</td>
</tr>
<tr>
<td>Lu - Utryckningsfordon</td>
<td>Vagverket</td>
<td>10000</td>
<td>2500</td>
</tr>
<tr>
<td>P - Personbil</td>
<td>Vagverket</td>
<td>4900</td>
<td>1800</td>
</tr>
<tr>
<td>Ph - Personbil med husvagn</td>
<td>Vagverket</td>
<td>13450</td>
<td>2300</td>
</tr>
<tr>
<td>Ts - Traktor med slap</td>
<td>Vagverket</td>
<td>9200</td>
<td>2200</td>
</tr>
</tbody>
</table>

Swedish Design Vehicle Library: Turning circles

The turning circle radii are expressed in the source documents as wall-to-wall values.

Swedish Design Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

Swedish Design Vehicle Library: Maximum Articulation Angles

In most cases the maximum articulation angles between tractor and trailer have been set at 90 degrees. We believe that whilst angles can exceed this figure for some vehicles this is a generally a reasonable
compromise. If you have a reliable source that suggests an alternative value we recommend that you use that.

Swedish Design Vehicle Library: Axle layouts & wheel sizes

All wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.

Swedish Design Vehicle Library: Kingpin offsets

In many cases where a component is used such that it is not towing another component the kingpin position is left as zero. If you use a component in a towing role you should check the kingpin (or towbar) location.

Swedish Design Vehicle Library: References

Swiss Design Vehicle Library (CH_xxx.ATL)

The data contained within this library has been obtained from "SN 640 198a" and "SN 640 271a" both published by Union des professionnels suisses de la route (see references (i) and (ii) below).

For further information on these vehicles and their use for design purposes, the user of this software is urged to consult these publications.

Swiss Design Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autocar / Bus (12m)</td>
<td>SN 640 198a</td>
<td>12000</td>
<td>2500</td>
</tr>
<tr>
<td>Autocar / Bus (15m)</td>
<td>SN 640 198a</td>
<td>15000</td>
<td>2500</td>
</tr>
<tr>
<td>Camion / Lastwagen</td>
<td>SN 640 198a</td>
<td>9400</td>
<td>2600</td>
</tr>
<tr>
<td>Camion avec remorque / Lastwagen mit Anhanger</td>
<td>SN 640 198a</td>
<td>18000</td>
<td>2500</td>
</tr>
<tr>
<td>Voiture automobile legere / Personenwagen</td>
<td>SN 640 198a</td>
<td>5100</td>
<td>1900</td>
</tr>
<tr>
<td>Camion / Lastwagen (A)</td>
<td>SN 640 271a</td>
<td>9400</td>
<td>2600</td>
</tr>
<tr>
<td>Camion avec remorque / Lastwagen mit Anhanger (A)</td>
<td>SN 640 271a</td>
<td>18000</td>
<td>2500</td>
</tr>
<tr>
<td>Camion / Lastwagen (B)</td>
<td>SN 640 271a</td>
<td>11000</td>
<td>2500</td>
</tr>
<tr>
<td>Camion avec remorque / Lastwagen mit Anhanger (B)</td>
<td>SN 640 271a</td>
<td>18000</td>
<td>2500</td>
</tr>
</tbody>
</table>

Swedish Design Vehicle Library: Turning circles

The turning circle radii are expressed in the source documents as virtual steering angles.

Swiss Design Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

Swiss Design Vehicle Library: Maximum Articulation Angles

In most cases the maximum articulation angles between tractor and trailer have been set at 90 degrees. We believe that whilst angles can exceed this figure for some vehicles this is generally a reasonable compromise. If you have a reliable source that suggests an alternative value we recommend that you use that.
Swiss Design Vehicle Library: Axle layouts & wheel sizes

All wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.

Swiss Design Vehicle Library: Kingpin offsets

In many cases where a component is used such that it is not towing another component the kingpin position is left as zero. If you use a component in a towing role you should check the kingpin (or towbar) location.

Swiss Design Vehicle Library: References

US Design Vehicle Library (US_xxx.ATL)

The ASSHTO design vehicle details were obtained from "A Policy on Geometric Design of Highways and Streets" published by the American Association of State Highway and Transportation Officials (see references (i), (ii) & (iv) below).

The CALTRANS design vehicle details were obtained from "Highway Design Manual", published by California State Department of Transportation (see reference (iii) below).

For further information on these vehicles and their use for design purposes, the user of this software is urged to consult these publications.

US Design Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Length (ft)</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Car (P)</td>
<td>AASHTO (1990)</td>
<td>19.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Single Unit Truck (SU)</td>
<td>AASHTO (1990)</td>
<td>30.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Single Unit Bus (BUS)</td>
<td>AASHTO (1990)</td>
<td>40.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Articulated Bus (A-BUS)</td>
<td>AASHTO (1990)</td>
<td>60.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Intermediate Semi-Trailer (WB-40)</td>
<td>AASHTO (1990)</td>
<td>50.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Large Semi-Trailer (WB-50)</td>
<td>AASHTO (1990)</td>
<td>55.0</td>
<td>8.5</td>
</tr>
<tr>
<td>"Double Bottom" Semi-Trailer Full Trailer (WB-60)</td>
<td>AASHTO (1990)</td>
<td>65.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-62)</td>
<td>AASHTO (1990)</td>
<td>70.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-67)</td>
<td>AASHTO (1990)</td>
<td>74.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Triple Semi-Trailer (WB-96)</td>
<td>AASHTO (1990)</td>
<td>102.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Turnpike Double Semi-Trailer (WB-114)</td>
<td>AASHTO (1990)</td>
<td>118.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Motor Home (MH)</td>
<td>AASHTO (1990)</td>
<td>30.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Car and Camper Trailer (P/T)</td>
<td>AASHTO (1990)</td>
<td>50.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Car and Boat Trailer (P/B)</td>
<td>AASHTO (1990)</td>
<td>42.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Motor Home and Boat Trailer (MH/B)</td>
<td>AASHTO (1990)</td>
<td>53.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Passenger Car (P)</td>
<td>AASHTO (2001)</td>
<td>19.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Single Unit Truck (SU)</td>
<td>AASHTO (2001)</td>
<td>30.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Inter-city Bus (BUS-40)</td>
<td>AASHTO (2001)</td>
<td>40.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Inter-city Bus (BUS-45)</td>
<td>AASHTO (2001)</td>
<td>45.0</td>
<td>8.5</td>
</tr>
<tr>
<td>City Transit Bus (CITY-BUS)</td>
<td>AASHTO (2001)</td>
<td>40.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Conventional School Bus (S-BUS 36)</td>
<td>AASHTO (2001)</td>
<td>35.8</td>
<td>8.0</td>
</tr>
<tr>
<td>Large School Bus (S-BUS 40)</td>
<td>AASHTO (2001)</td>
<td>40.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Articulated Bus (A-BUS)</td>
<td>AASHTO (2001)</td>
<td>60.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Intermediate Semi-Trailer (WB-40)</td>
<td>AASHTO (2001)</td>
<td>45.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Intermediate Semi-Trailer (WB-50)</td>
<td>AASHTO (2001)</td>
<td>55.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-62)</td>
<td>AASHTO (2001)</td>
<td>68.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-65)</td>
<td>AASHTO (2001)</td>
<td>73.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-67)</td>
<td>AASHTO (2001)</td>
<td>73.5</td>
<td>8.5</td>
</tr>
<tr>
<td>"Double Bottom" Semi-Trailer / Trailer (WB-67D)</td>
<td>AASHTO (2001)</td>
<td>72.33</td>
<td>8.5</td>
</tr>
<tr>
<td>Triple Semi-Trailer / Trailer (WB-100T)</td>
<td>AASHTO (2001)</td>
<td>104.83</td>
<td>8.5</td>
</tr>
<tr>
<td>Turnpike Double Semi-Trailer /</td>
<td>AASHTO (2001)</td>
<td>114.03</td>
<td>8.5</td>
</tr>
<tr>
<td>Vehicle Type Length (ft)</td>
<td>Width (ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trailer (WB-109D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Home (MH)</td>
<td>AASHTO (2001)</td>
<td>30.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Car and Camper Trailer (P/T)</td>
<td>AASHTO (2001)</td>
<td>42.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Car and Boat Trailer (P/B)</td>
<td>AASHTO (2001)</td>
<td>48.7</td>
<td>8.0</td>
</tr>
<tr>
<td>Motor Home and Boat Trailer (MH/B)</td>
<td>AASHTO (2001)</td>
<td>53.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Farm Tractor (TR)</td>
<td>AASHTO (2001)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Type Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Car (P)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Single Unit Truck (SU)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Single Unit Bus (BUS)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Articulated Bus (A-BUS)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Intermediate Semi-Trailer (WB-40)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Intermediate Semi-Trailer (WB-50)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-62)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-65)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-67)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>"Double Bottom" Semi-Trailer / Trailer (WB-67D)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Triple Semi-Trailer / Trailer (WB-100T)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Turnpike Double Semi-Trailer / Trailer (WB-109D)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Motor Home (MH)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Car and Camper Trailer (P/T)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Car and Boat Trailer (P/B)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Motor Home and Boat Trailer (MH/B)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Farm Tractor (TR)</td>
<td>AASHTO (1994)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Type Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Car (P)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Single Unit Truck (SU)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Single Unit Bus (BUS)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Articulated Bus (A-BUS)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Intermediate Semi-Trailer (WB-12)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Large Semi-Trailer (WB-15)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>"Double Bottom" Semi-Trailer Full Trailer (WB-18)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-19)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-20)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Triple Semi-Trailer (WB-29)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Turnpike Double Semi-Trailer (WB-35)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Motor Home (MH)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Car and Camper Trailer (P/T)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Car and Boat Trailer (P/B)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Motor Home and Boat Trailer (MH/B)</td>
<td>AASHTO (1994)</td>
</tr>
<tr>
<td>Vehicle</td>
<td>Type</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Passenger Car (P)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Single Unit Truck (SU)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Inter-city Bus (BUS-12)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Inter-city Bus (BUS-14)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>City Transit Bus (CITY-BUS)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Conventional School Bus (S-BUS 11)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Large School Bus (S-BUS 12)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Articulated Bus (A-BUS)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Intermediate Semi-Trailer (WB-12)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-19)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-20)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-20) LWB</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>"Double Bottom" Semi-Trailer / Trailer (WB-20D)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Triple Semi-Trailer /Trailer (WB-30T)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Turnpike Double Semi-Trailer / Trailer (WB-33D)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Motor Home (MH)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Car and Camper Trailer (P/T)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Car and Boat Trailer (P/B)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Motor Home and Boat Trailer (MH/B)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Farm Tractor (TR)</td>
<td>AASHTO (2001)</td>
</tr>
<tr>
<td>Passenger Car (P)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Single Unit Truck (SU)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Inter-city Bus (BUS-12)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Inter-city Bus (BUS-14)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>City Transit Bus (CITY-BUS)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Conventional School Bus (S-BUS 11)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Large School Bus (S-BUS 12)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Intermediate Semi-Trailer (WB-12) LWB</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-19) LWB</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-20) LWB</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Interstate Semi-Trailer (WB-20) LWB</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>"Double Bottom" Semi-Trailer / Trailer (WB-20D)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Triple Semi-Trailer /Trailer (WB-30T)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Turnpike Double Semi-Trailer / Trailer (WB-33D)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Motor Home (MH)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Car and Camper Trailer (P/T)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Car and Boat Trailer (P/B)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Motor Home and Boat Trailer (MH/B)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Farm Tractor (TR)</td>
<td>AASHTO (2004)</td>
</tr>
<tr>
<td>Bus Design Vehicle</td>
<td>CALTRANS</td>
</tr>
</tbody>
</table>
California Design Vehicle CALTRANS 19810 2600
STAA Design Vehicle CALTRANS 21000 2600

US Design Vehicle Library: Turning circles

Since library vehicles may not be edited two versions of each of the semi-trailer vehicles have been included for the two design turning circle radii recommended by the Highway Design Manual.

US Design Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

US Design Vehicle Library: Maximum Articulation Angles

In most cases the maximum articulation angles between tractor and trailer have been set at 90 degrees. We believe that whilst angles can exceed this figure for some vehicles this is a generally a reasonable compromise. Again, if you have a reliable source that suggests an alternative value we recommend that you use that.

US Design Vehicle Library: Axle layouts & wheel sizes

All wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.

US Design Vehicle Library: Kingpin offsets

In many cases where a component is used such that it is not towing another component the kingpin position is left as zero. If you use a component in a towing role you should check the kingpin (or towbar) location.

US Design Vehicle Library: Body dimensions

In some cases a figure for the rear body overhang is not provided. In these cases we have assumed 600mm (2ft).

US Design Vehicle Library: References

The other data contained within this library relates to real vehicles and has been carefully compiled from a number of reliable sources. In most cases the data correlated well but with so many minor model variations there were inevitably instances where the data did not match exactly. In these cases the more conservative data has been used.

European Vehicle Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>London Taxi</td>
<td>PSV</td>
<td>4585</td>
<td>1749</td>
</tr>
<tr>
<td>Ambulance</td>
<td>PSV</td>
<td>5461</td>
<td>2020</td>
</tr>
<tr>
<td>Hydraulic Inspection Platform</td>
<td>PSV</td>
<td>11700</td>
<td>2490</td>
</tr>
<tr>
<td>Snow plough</td>
<td>PSV</td>
<td>10220</td>
<td>2500</td>
</tr>
<tr>
<td>Small Articulated Vehicle</td>
<td>HGV</td>
<td>10700</td>
<td>2360</td>
</tr>
<tr>
<td>Car Transporter (Drawbar Style)</td>
<td>HGV</td>
<td>18000</td>
<td>2500</td>
</tr>
<tr>
<td>Close Coupled Drawbar Vehicle</td>
<td>HGV</td>
<td>18360</td>
<td>2500</td>
</tr>
<tr>
<td>Large Articulated Vehicle</td>
<td>HGV</td>
<td>15500</td>
<td>2500</td>
</tr>
<tr>
<td>Oil Tanker</td>
<td>HGV</td>
<td>14458</td>
<td>2500</td>
</tr>
<tr>
<td>Removals Van</td>
<td>HGV</td>
<td>9350</td>
<td>2460</td>
</tr>
<tr>
<td>Maximum Legal Articulated Vehicle</td>
<td>HGV</td>
<td>16500</td>
<td>2500</td>
</tr>
<tr>
<td>Low Loader</td>
<td>HGV</td>
<td>17080</td>
<td>2500</td>
</tr>
<tr>
<td>Car Transporter (Articulated Style)</td>
<td>HGV</td>
<td>15000</td>
<td>2500</td>
</tr>
<tr>
<td>Articulated Vehicle with Steered Trailer</td>
<td>HGV</td>
<td>15500</td>
<td>2600</td>
</tr>
<tr>
<td>Articulated Vehicle (Twin Steered Tractor)</td>
<td>HGV</td>
<td>16500</td>
<td>2500</td>
</tr>
<tr>
<td>Drawbar Truck (18.0m)</td>
<td>HGV</td>
<td>18000</td>
<td>2500</td>
</tr>
<tr>
<td>Rigid Truck</td>
<td>HGV</td>
<td>12000</td>
<td>2500</td>
</tr>
<tr>
<td>Pantechnicon</td>
<td>HGV</td>
<td>11000</td>
<td>2500</td>
</tr>
<tr>
<td>3.5Ton Panel Van</td>
<td>LGV</td>
<td>5350</td>
<td>1970</td>
</tr>
<tr>
<td>Pickup Truck</td>
<td>LGV</td>
<td>4350</td>
<td>1700</td>
</tr>
<tr>
<td>Milk Float</td>
<td>LGV</td>
<td>4730</td>
<td>1670</td>
</tr>
<tr>
<td>1.4Ton Microvan</td>
<td>LGV</td>
<td>3250</td>
<td>1400</td>
</tr>
<tr>
<td>7.5Ton Box Van</td>
<td>LGV</td>
<td>8010</td>
<td>2100</td>
</tr>
<tr>
<td>7.5Ton Panel Van</td>
<td>LGV</td>
<td>7210</td>
<td>2192</td>
</tr>
<tr>
<td>Car-Derived Van</td>
<td>LGV</td>
<td>4350</td>
<td>1700</td>
</tr>
<tr>
<td>4.6Ton Light Van</td>
<td>LGV</td>
<td>5885</td>
<td>2000</td>
</tr>
<tr>
<td>Small Car</td>
<td>Car</td>
<td>3405</td>
<td>1554</td>
</tr>
<tr>
<td>Estate Car</td>
<td>Car</td>
<td>4845</td>
<td>1750</td>
</tr>
<tr>
<td>Car & Caravan</td>
<td>Car</td>
<td>10805</td>
<td>2130</td>
</tr>
<tr>
<td>Medium Sized Car</td>
<td>Car</td>
<td>4312</td>
<td>1686</td>
</tr>
<tr>
<td>4 Wheel Drive Car</td>
<td>Car</td>
<td>4725</td>
<td>1785</td>
</tr>
<tr>
<td>Motorhome</td>
<td>Car</td>
<td>6680</td>
<td>2220</td>
</tr>
<tr>
<td>Large Saloon Car</td>
<td>Car</td>
<td>4988</td>
<td>1793</td>
</tr>
<tr>
<td>Limousine</td>
<td>Car</td>
<td>5510</td>
<td>1970</td>
</tr>
<tr>
<td>London Taxi</td>
<td>Car</td>
<td>4585</td>
<td>1749</td>
</tr>
<tr>
<td>Concrete Mixer</td>
<td>Const'n</td>
<td>8360</td>
<td>2390</td>
</tr>
<tr>
<td>Small Mobile Crane</td>
<td>Const'n</td>
<td>7110</td>
<td>2500</td>
</tr>
<tr>
<td>Small Tipper</td>
<td>Const'n</td>
<td>6528</td>
<td>2495</td>
</tr>
<tr>
<td>Small Skip Lorry</td>
<td>Const'n</td>
<td>6265</td>
<td>2500</td>
</tr>
<tr>
<td>Large Mobile Crane</td>
<td>Const'n</td>
<td>12300</td>
<td>2430</td>
</tr>
<tr>
<td>Vehicle</td>
<td>Type</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Large Tipper</td>
<td>Const'n</td>
<td>10201</td>
<td>2500</td>
</tr>
<tr>
<td>Dumper Truck</td>
<td>Const'n</td>
<td>7162</td>
<td>3901</td>
</tr>
<tr>
<td>Excavator</td>
<td>Const'n</td>
<td>6140</td>
<td>2440</td>
</tr>
<tr>
<td>400T Mobile Crane</td>
<td>Const'n</td>
<td>20360</td>
<td>3000</td>
</tr>
<tr>
<td>Mistral 50-12</td>
<td>Jonckheere</td>
<td>11980</td>
<td>2550</td>
</tr>
<tr>
<td>Mistral 50-12.76</td>
<td>Jonckheere</td>
<td>12765</td>
<td>2550</td>
</tr>
<tr>
<td>Mistral 50-18 Articulated</td>
<td>Jonckheere</td>
<td>17975</td>
<td>2550</td>
</tr>
<tr>
<td>Mistral 70-12.76</td>
<td>Jonckheere</td>
<td>12765</td>
<td>2550</td>
</tr>
<tr>
<td>Mistral 70-13.76</td>
<td>Jonckheere</td>
<td>13752</td>
<td>2550</td>
</tr>
<tr>
<td>Mistral 70-15</td>
<td>Jonckheere</td>
<td>14841</td>
<td>2550</td>
</tr>
<tr>
<td>Modulo 12</td>
<td>Jonckheere</td>
<td>11980</td>
<td>2550</td>
</tr>
<tr>
<td>Modulo 12.76</td>
<td>Jonckheere</td>
<td>12760</td>
<td>2550</td>
</tr>
<tr>
<td>Modulo 9</td>
<td>Jonckheere</td>
<td>10110</td>
<td>2500</td>
</tr>
<tr>
<td>Monaco 12</td>
<td>Jonckheere</td>
<td>12000</td>
<td>2550</td>
</tr>
<tr>
<td>Dart SLF 9.00m</td>
<td>Dennis</td>
<td>9009</td>
<td>2360</td>
</tr>
<tr>
<td>Dart SLF 10.00m</td>
<td>Dennis</td>
<td>9809</td>
<td>2360</td>
</tr>
<tr>
<td>Dart SLF 10.50m</td>
<td>Dennis</td>
<td>10414</td>
<td>2360</td>
</tr>
<tr>
<td>Dart SLF 11.20m</td>
<td>Dennis</td>
<td>11009</td>
<td>2401</td>
</tr>
<tr>
<td>Trident II 9.90m 2 axle</td>
<td>Dennis</td>
<td>9900</td>
<td>2400</td>
</tr>
<tr>
<td>Trident II 10.45m 2 axle</td>
<td>Dennis</td>
<td>10450</td>
<td>2400</td>
</tr>
<tr>
<td>Trident II 10.60m 3 axle</td>
<td>Dennis</td>
<td>10600</td>
<td>2496</td>
</tr>
<tr>
<td>Trident II 11.30m 3 axle</td>
<td>Dennis</td>
<td>11273</td>
<td>2496</td>
</tr>
<tr>
<td>Trident II 12.00m 3 axle</td>
<td>Dennis</td>
<td>12000</td>
<td>2496</td>
</tr>
<tr>
<td>15m 6WS Luxury Coach</td>
<td>Buses (Others)</td>
<td>15000</td>
<td>2500</td>
</tr>
<tr>
<td>Bendi-Bus</td>
<td>Buses</td>
<td>17870</td>
<td>2500</td>
</tr>
<tr>
<td>Double Decker Bus</td>
<td>Buses</td>
<td>9484</td>
<td>2452</td>
</tr>
<tr>
<td>Midi Bus</td>
<td>Buses</td>
<td>10000</td>
<td>2286</td>
</tr>
<tr>
<td>Mini Bus</td>
<td>Buses</td>
<td>6330</td>
<td>2192</td>
</tr>
<tr>
<td>Single Deck Bus</td>
<td>Buses</td>
<td>11980</td>
<td>2440</td>
</tr>
<tr>
<td>Wrightbus Streetcar</td>
<td>Buses</td>
<td>18699</td>
<td>2520</td>
</tr>
<tr>
<td>Phoenix 2 Duo Recycler P2-12 (6x4)</td>
<td>Euro 5i</td>
<td>10320</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2 Duo Recycler P2-12 (6x2MS)</td>
<td>Euro 5i</td>
<td>10755</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2 Duo Recycler P2-15 (6x4)</td>
<td>Euro 5i</td>
<td>11220</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2 HC Twin Pack 15 (6x2ML)</td>
<td>Euro 5i</td>
<td>9070</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2 HC Twin Pack 20 (6x4)</td>
<td>Euro 5i</td>
<td>10170</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2 HC Twin Pack 50/50 (6x4)</td>
<td>Euro 5i</td>
<td>10170</td>
<td>2550</td>
</tr>
<tr>
<td>Phoenix 2 One Pass (6x4)</td>
<td>Euro 5i</td>
<td>11180</td>
<td>2550</td>
</tr>
<tr>
<td>Phoenix 2-09 (4x2)</td>
<td>Euro 5i</td>
<td>8170</td>
<td>2250</td>
</tr>
<tr>
<td>Phoenix 2-12N (6x2ML)</td>
<td>Euro 5i</td>
<td>8970</td>
<td>2250</td>
</tr>
<tr>
<td>Phoenix 2-12W (4x2)</td>
<td>Euro 5i</td>
<td>8420</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-15N (6x2ML)</td>
<td>Euro 5i</td>
<td>9620</td>
<td>2250</td>
</tr>
<tr>
<td>Phoenix 2-15N (6x2MS)</td>
<td>Euro 5i</td>
<td>9620</td>
<td>2250</td>
</tr>
<tr>
<td>Phoenix 2-15N (6x2RS)</td>
<td>Euro 5i</td>
<td>9620</td>
<td>2250</td>
</tr>
<tr>
<td>Vehicle</td>
<td>Type</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Phoenix 2-15W (4x2)</td>
<td>Euro 5i</td>
<td>8970</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-15W (6x2ML)</td>
<td>Euro 5i</td>
<td>8970</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-17N (6x2ML)</td>
<td>Euro 5i</td>
<td>10220</td>
<td>2250</td>
</tr>
<tr>
<td>Phoenix 2-17N (6x2MS)</td>
<td>Euro 5i</td>
<td>10120</td>
<td>2250</td>
</tr>
<tr>
<td>Phoenix 2-17N (6x2RS)</td>
<td>Euro 5i</td>
<td>10220</td>
<td>2250</td>
</tr>
<tr>
<td>Phoenix 2-18W (6x2ML)</td>
<td>Euro 5i</td>
<td>9620</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-18W (6x2MS)</td>
<td>Euro 5i</td>
<td>9620</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-18W (6x2RS)</td>
<td>Euro 5i</td>
<td>9620</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-18W (6x4)</td>
<td>Euro 5i</td>
<td>9620</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-20W (6x2RS)</td>
<td>Euro 5i</td>
<td>10220</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-20W (6x2ML)</td>
<td>Euro 5i</td>
<td>10220</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-20W (6x2MS)</td>
<td>Euro 5i</td>
<td>10120</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-20W (6x4)</td>
<td>Euro 5i</td>
<td>10220</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-23W (6x2RS)</td>
<td>Euro 5i</td>
<td>10520</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-23W (6x2ML)</td>
<td>Euro 5i</td>
<td>10520</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-23W (6x2MS)</td>
<td>Euro 5i</td>
<td>10420</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-23W (6x4)</td>
<td>Euro 5i</td>
<td>10520</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2 Duo P2-12W (6x4)</td>
<td>Euro 3</td>
<td>10200</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2 Duo P2-15W (6x4)</td>
<td>Euro 3</td>
<td>11200</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2 HC Twin Pack 15 (6x2ML)</td>
<td>Euro 3</td>
<td>9040</td>
<td>2500</td>
</tr>
<tr>
<td>Phoenix 2 HC Twin Pack 20 (6x4)</td>
<td>Euro 3</td>
<td>10140</td>
<td>2500</td>
</tr>
<tr>
<td>Phoenix 2 One Pass (6x4)</td>
<td>Euro 3</td>
<td>10980</td>
<td>2500</td>
</tr>
<tr>
<td>Phoenix 2-09 (4x2)</td>
<td>Euro 3</td>
<td>8145</td>
<td>2230</td>
</tr>
<tr>
<td>Phoenix 2-12N (6x2ML)</td>
<td>Euro 3</td>
<td>8945</td>
<td>2230</td>
</tr>
<tr>
<td>Phoenix 2-12W (4x2)</td>
<td>Euro 3</td>
<td>8395</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-15N (6x2ML)</td>
<td>Euro 3</td>
<td>9595</td>
<td>2230</td>
</tr>
<tr>
<td>Phoenix 2-15N (6x2MS)</td>
<td>Euro 3</td>
<td>9595</td>
<td>2230</td>
</tr>
<tr>
<td>Phoenix 2-15W (6x2ML)</td>
<td>Euro 3</td>
<td>8945</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-17N (6x2ML)</td>
<td>Euro 3</td>
<td>10195</td>
<td>2230</td>
</tr>
<tr>
<td>Phoenix 2-17N (6x2MS)</td>
<td>Euro 3</td>
<td>10195</td>
<td>2230</td>
</tr>
<tr>
<td>Phoenix 2-18W (6x2ML)</td>
<td>Euro 3</td>
<td>9595</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-18W (6x2MS)</td>
<td>Euro 3</td>
<td>9595</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-20W (6x2MS)</td>
<td>Euro 3</td>
<td>10195</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-20W (6x4)</td>
<td>Euro 3</td>
<td>10195</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-23W (6x2MS)</td>
<td>Euro 3</td>
<td>10595</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-23W (6x4)</td>
<td>Euro 3</td>
<td>10595</td>
<td>2530</td>
</tr>
<tr>
<td>Phoenix 2-25W (Volvo FM12)</td>
<td>Euro 3</td>
<td>11125</td>
<td>2530</td>
</tr>
<tr>
<td>Large Refuse Vehicle (3 axle)</td>
<td>Refuse</td>
<td>9860</td>
<td>2450</td>
</tr>
<tr>
<td>Large Refuse Vehicle (4 axle)</td>
<td>Refuse</td>
<td>11347</td>
<td>2500</td>
</tr>
<tr>
<td>Medium Refuse Vehicle (3 axle)</td>
<td>Refuse</td>
<td>9010</td>
<td>2450</td>
</tr>
<tr>
<td>Small Refuse Vehicle</td>
<td>Refuse</td>
<td>6623</td>
<td>2200</td>
</tr>
<tr>
<td>Vulture 2225</td>
<td>Refuse</td>
<td>9930</td>
<td>2490</td>
</tr>
<tr>
<td>Vulture 3025(N)</td>
<td>Refuse</td>
<td>11997</td>
<td>2500</td>
</tr>
<tr>
<td>Dennis Rapier Fire Tender</td>
<td>Fire</td>
<td>6490</td>
<td>2300</td>
</tr>
<tr>
<td>Dennis Sabre Fire Tender (LWB)</td>
<td>Fire</td>
<td>7700</td>
<td>2430</td>
</tr>
<tr>
<td>Dennis Sabre Fire Tender (MWB)</td>
<td>Fire</td>
<td>7350</td>
<td>2430</td>
</tr>
<tr>
<td>Dennis Sabre Fire Tender (SWB)</td>
<td>Fire</td>
<td>7000</td>
<td>2430</td>
</tr>
</tbody>
</table>

European Vehicle Library: Turning circles

In some cases the kerb-to-kerb turning circle radius was not available and a value has been calculated from the wall-to-wall turning circle radius.
European Vehicle Library: Lock to lock time

Lock to lock time is not a parameter that is easily obtainable from manufacturers, but it does affect the manoeuvrability of vehicles and so is important. In the absence of reliable data we have in most cases set the lock to lock time to a notional figure of either four or six seconds depending upon the size of vehicle. If you have a reliable source that suggests an alternative figure we recommend that you use that.

European Vehicle Library: Maximum Articulation Angles

In most cases the maximum articulation angle between tractor and trailer have been set at 90 degrees. We believe that whilst angles can exceed this figure for some vehicles this is a generally a reasonable compromise. Again, if you have a reliable source that suggests an alternative value we recommend that you use that.

European Vehicle Library: Axle layouts & wheel sizes

The spacing of the axles on some multi-axle configurations have been estimated. This does not affect the steering characteristics of the vehicle but if wheel path is critical you may wish to check the spacing from your own sources. Almost all wheel sizes (diameter and width) are approximate values. These dimensions do not affect the turning characteristics or wheel tracking.

European Vehicle Library: Kingpin offsets

In many cases where a component is used such that it is not towing another component the kingpin position is left as zero. If you use a component in a towing role you should check the kingpin (or towbar) location.
Specialised Vehicles Library (SPC_xxx.ATL)

Vehicles in this library are universal in some way either because of their specialist nature (e.g. quarrying trucks), exceptional size (e.g. abnormal load carriers) or common usage (e.g. wheelchairs).

Aircraft Library: List of Vehicles

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal load carrier</td>
<td>Abnormal</td>
<td>68755</td>
<td>5000</td>
</tr>
<tr>
<td>Articulated heavy load mover with 3.22m wide load platform</td>
<td>Abnormal</td>
<td>50840</td>
<td>3220</td>
</tr>
<tr>
<td>Articulated heavy load mover with 4.88m wide load platform</td>
<td>Abnormal</td>
<td>50840</td>
<td>4880</td>
</tr>
<tr>
<td>Articulated heavy load mover with 6.22m wide load platform</td>
<td>Abnormal</td>
<td>37260</td>
<td>6220</td>
</tr>
<tr>
<td>Extendible platform vehicle (fully extended)</td>
<td>Abnormal</td>
<td>38470</td>
<td>2600</td>
</tr>
<tr>
<td>Extendible platform vehicle (not extended)</td>
<td>Abnormal</td>
<td>18970</td>
<td>2600</td>
</tr>
<tr>
<td>Boeing 737-300 passenger aircraft</td>
<td>Airport</td>
<td>33400</td>
<td>28880</td>
</tr>
<tr>
<td>Towbar-less aircraft tug</td>
<td>Airport</td>
<td>8900</td>
<td>3050</td>
</tr>
<tr>
<td>Farm tractor & hay wagon</td>
<td>Agricultural</td>
<td>19020</td>
<td>2500</td>
</tr>
<tr>
<td>Massey Fergusson 7278 combine harvester & trailer</td>
<td>Agricultural</td>
<td>18779</td>
<td>3460</td>
</tr>
<tr>
<td>Crucible transporter</td>
<td>Foundry</td>
<td>10730</td>
<td>2390</td>
</tr>
<tr>
<td>MDA Strider Maxi 4 Scooter</td>
<td>Mobility</td>
<td>1440</td>
<td>650</td>
</tr>
<tr>
<td>Electric Mobility Rascal 889 Scooter</td>
<td>Mobility</td>
<td>1461</td>
<td>730</td>
</tr>
<tr>
<td>Sunrise Sterling Little Gem 3 Scooter</td>
<td>Mobility</td>
<td>930</td>
<td>400</td>
</tr>
<tr>
<td>Sunrise Sterling Sapphire LS Scooter</td>
<td>Mobility</td>
<td>1220</td>
<td>530</td>
</tr>
<tr>
<td>Wheelchair</td>
<td>Special</td>
<td>1080</td>
<td>0660</td>
</tr>
<tr>
<td>Container straddle carrier</td>
<td>Port vehicles</td>
<td>10400</td>
<td>5000</td>
</tr>
<tr>
<td>Fork lift truck</td>
<td>Special</td>
<td>2750</td>
<td>1070</td>
</tr>
<tr>
<td>Volvo A30C articulated hauler</td>
<td>Quarry</td>
<td>9836</td>
<td>2950</td>
</tr>
<tr>
<td>Denby Eco-Link Artic</td>
<td>Special</td>
<td>25250</td>
<td>2500</td>
</tr>
<tr>
<td>Stretched Limousine (100)</td>
<td>Stretched Limos</td>
<td>8163</td>
<td>1994</td>
</tr>
<tr>
<td>Stretched Limousine (120)</td>
<td>Stretched Limos</td>
<td>8672</td>
<td>1994</td>
</tr>
<tr>
<td>Stretched Limousine (70)</td>
<td>Stretched Limos</td>
<td>7401</td>
<td>1994</td>
</tr>
<tr>
<td>Stretched Limousine (85)</td>
<td>Stretched Limos</td>
<td>7782</td>
<td>1994</td>
</tr>
<tr>
<td>Budapest TW6000 tram (requires light rail version)</td>
<td>Trams</td>
<td>27000</td>
<td>2400</td>
</tr>
</tbody>
</table>
The aircraft library includes commercial, military and private aircraft in use the world over. Those printed in italics have predefined reports for jet exhaust velocity and/or jet exhaust temperature and/or servicing points.

Although the aircraft included have all been checked for accuracy we do nevertheless recommend that you double check critical dimensions. Please let us know if you do find any errors and we will correct them immediately.

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Wing span (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospatiale ATR-42</td>
<td>Commercial</td>
<td>22670</td>
<td>24575</td>
</tr>
<tr>
<td>Aerospatiale ATR-72</td>
<td>Commercial</td>
<td>27166</td>
<td>27051</td>
</tr>
<tr>
<td>Airbus A300F4-600</td>
<td>Commercial</td>
<td>54080</td>
<td>44840</td>
</tr>
<tr>
<td>Airbus A300B2 (except B2-320)</td>
<td>Commercial</td>
<td>53720</td>
<td>44830</td>
</tr>
<tr>
<td>Airbus A300B2-320</td>
<td>Commercial</td>
<td>53720</td>
<td>44830</td>
</tr>
<tr>
<td>Airbus A300B4 & C4 (except B4-120)</td>
<td>Commercial</td>
<td>53720</td>
<td>44830</td>
</tr>
<tr>
<td>Airbus A300B4-120</td>
<td>Commercial</td>
<td>53720</td>
<td>44830</td>
</tr>
<tr>
<td>Airbus A310-200 (GE CF6 engines)</td>
<td>Commercial</td>
<td>46660</td>
<td>43890</td>
</tr>
<tr>
<td>Airbus A310-200 (PW JT9D engines)</td>
<td>Commercial</td>
<td>46660</td>
<td>43890</td>
</tr>
<tr>
<td>Airbus A310-300 (GE CF6 engines)</td>
<td>Commercial</td>
<td>46660</td>
<td>43890</td>
</tr>
<tr>
<td>Airbus A310-300 (PW JT9D engines)</td>
<td>Commercial</td>
<td>46660</td>
<td>43890</td>
</tr>
<tr>
<td>Airbus A318-100 (Models 11x)</td>
<td>Commercial</td>
<td>31450</td>
<td>34100</td>
</tr>
<tr>
<td>Airbus A318-100 (Models 12x)</td>
<td>Commercial</td>
<td>31450</td>
<td>34100</td>
</tr>
<tr>
<td>Airbus A319-100 (Models 11x)</td>
<td>Commercial</td>
<td>33840</td>
<td>34100</td>
</tr>
<tr>
<td>Airbus A319-100 (Models 13x)</td>
<td>Commercial</td>
<td>33840</td>
<td>34100</td>
</tr>
<tr>
<td>Airbus A320-100 (Models 11x)</td>
<td>Commercial</td>
<td>37570</td>
<td>33910</td>
</tr>
<tr>
<td>Airbus A320-100 (Models 13x)</td>
<td>Commercial</td>
<td>37570</td>
<td>33910</td>
</tr>
<tr>
<td>Airbus A320-200 (Models 21x)</td>
<td>Commercial</td>
<td>37570</td>
<td>33910</td>
</tr>
<tr>
<td>Airbus A320-200 (Models 23x)</td>
<td>Commercial</td>
<td>37570</td>
<td>33910</td>
</tr>
<tr>
<td>Airbus A321-200 (Model 211)</td>
<td>Commercial</td>
<td>44510</td>
<td>34092</td>
</tr>
<tr>
<td>Airbus A321-200 (Models 231 & 232)</td>
<td>Commercial</td>
<td>44510</td>
<td>34092</td>
</tr>
<tr>
<td>Airbus A330-200 (GE CF6 engines)</td>
<td>Commercial</td>
<td>58372</td>
<td>60300</td>
</tr>
<tr>
<td>Airbus A330-200 (RR RB211 engines)</td>
<td>Commercial</td>
<td>58372</td>
<td>60300</td>
</tr>
<tr>
<td>Airbus A330-300 (GE CF6 engines)</td>
<td>Commercial</td>
<td>63680</td>
<td>60300</td>
</tr>
<tr>
<td>Airbus A330-300 (RR RB211 engines)</td>
<td>Commercial</td>
<td>63680</td>
<td>60300</td>
</tr>
<tr>
<td>Airbus A340-200 (Models 21x)</td>
<td>Commercial</td>
<td>59420</td>
<td>60300</td>
</tr>
<tr>
<td>Airbus A340-300 (Models 31x)</td>
<td>Commercial</td>
<td>63600</td>
<td>60300</td>
</tr>
<tr>
<td>Airbus A340-500</td>
<td>Commercial</td>
<td>67929</td>
<td>63449</td>
</tr>
<tr>
<td>Airbus A340-600</td>
<td>Commercial</td>
<td>75360</td>
<td>63449</td>
</tr>
<tr>
<td>Airbus A380-800 (Model 841)</td>
<td>Commercial</td>
<td>72571</td>
<td>79973</td>
</tr>
<tr>
<td>Airbus A380-800 (Model 843F)</td>
<td>Commercial</td>
<td>72571</td>
<td>79973</td>
</tr>
<tr>
<td>Airbus A380-800 (Model 861)</td>
<td>Commercial</td>
<td>72571</td>
<td>79973</td>
</tr>
<tr>
<td>Airbus A380-800 (Model 863F)</td>
<td>Commercial</td>
<td>72571</td>
<td>79973</td>
</tr>
<tr>
<td>Airbus A380-900</td>
<td>Commercial</td>
<td>79450</td>
<td>79973</td>
</tr>
<tr>
<td>BAE/Aerospatiale Concorde</td>
<td>Commercial</td>
<td>62610</td>
<td>25600</td>
</tr>
<tr>
<td>BAE 146-200</td>
<td>Commercial</td>
<td>28580</td>
<td>26340</td>
</tr>
<tr>
<td>BAE 146-300</td>
<td>Commercial</td>
<td>30990</td>
<td>26336</td>
</tr>
<tr>
<td>BAE ATP</td>
<td>Commercial</td>
<td>26009</td>
<td>30639</td>
</tr>
<tr>
<td>Aircraft</td>
<td>Type</td>
<td>Length (mm)</td>
<td>Wing span (mm)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>BAe Jetstream J31</td>
<td>Commercial</td>
<td>14370</td>
<td>15850</td>
</tr>
<tr>
<td>BAe Jetstream J31 Super</td>
<td>Commercial</td>
<td>14370</td>
<td>15850</td>
</tr>
<tr>
<td>BAe Jetstream J41</td>
<td>Commercial</td>
<td>19218</td>
<td>18290</td>
</tr>
<tr>
<td>Boeing 707-120B</td>
<td>Commercial</td>
<td>44045</td>
<td>39876</td>
</tr>
<tr>
<td>Boeing 707-320</td>
<td>Commercial</td>
<td>46610</td>
<td>44437</td>
</tr>
<tr>
<td>Boeing 707-320B / 320C</td>
<td>Commercial</td>
<td>46610</td>
<td>44437</td>
</tr>
<tr>
<td>Boeing 707-420</td>
<td>Commercial</td>
<td>46610</td>
<td>44437</td>
</tr>
<tr>
<td>Boeing 717-200</td>
<td>Commercial</td>
<td>37815</td>
<td>28575</td>
</tr>
<tr>
<td>Boeing 727-100 / 100C</td>
<td>Commercial</td>
<td>42759</td>
<td>39245</td>
</tr>
<tr>
<td>Boeing 727-200</td>
<td>Commercial</td>
<td>46678</td>
<td>32945</td>
</tr>
<tr>
<td>Boeing 737 BBJ</td>
<td>Commercial</td>
<td>33630</td>
<td>35800</td>
</tr>
<tr>
<td>Boeing 737 BBJ2</td>
<td>Commercial</td>
<td>39470</td>
<td>35800</td>
</tr>
<tr>
<td>Boeing 737-100</td>
<td>Commercial</td>
<td>28600</td>
<td>28350</td>
</tr>
<tr>
<td>Boeing 737-200</td>
<td>Commercial</td>
<td>30530</td>
<td>28350</td>
</tr>
<tr>
<td>Boeing 737-300</td>
<td>Commercial</td>
<td>33400</td>
<td>28880</td>
</tr>
<tr>
<td>Boeing 737-400</td>
<td>Commercial</td>
<td>36450</td>
<td>28880</td>
</tr>
<tr>
<td>Boeing 737-500</td>
<td>Commercial</td>
<td>31010</td>
<td>28880</td>
</tr>
<tr>
<td>Boeing 737-600</td>
<td>Commercial</td>
<td>31240</td>
<td>34310</td>
</tr>
<tr>
<td>Boeing 737-700</td>
<td>Commercial</td>
<td>33630</td>
<td>34310</td>
</tr>
<tr>
<td>Boeing 737-700 (with winglets)</td>
<td>Commercial</td>
<td>33630</td>
<td>35800</td>
</tr>
<tr>
<td>Boeing 737-800</td>
<td>Commercial</td>
<td>39470</td>
<td>34310</td>
</tr>
<tr>
<td>Boeing 737-800 (with winglets)</td>
<td>Commercial</td>
<td>39470</td>
<td>35800</td>
</tr>
<tr>
<td>Boeing 737-900</td>
<td>Commercial</td>
<td>42110</td>
<td>34310</td>
</tr>
<tr>
<td>Boeing 737-900 (with winglets)</td>
<td>Commercial</td>
<td>42110</td>
<td>35800</td>
</tr>
<tr>
<td>Boeing 747-100 (with winglets)</td>
<td>Commercial</td>
<td>70663</td>
<td>59639</td>
</tr>
<tr>
<td>Boeing 747-100 (Body gear steering operative)</td>
<td>Commercial</td>
<td>70663</td>
<td>59639</td>
</tr>
<tr>
<td>Boeing 747-200 (Body gear steering inoperative)</td>
<td>Commercial</td>
<td>70663</td>
<td>59639</td>
</tr>
<tr>
<td>Boeing 747-300 (Body gear steering inoperative)</td>
<td>Commercial</td>
<td>70663</td>
<td>59639</td>
</tr>
<tr>
<td>Boeing 747-400 Domestic (Body gear steering inoperative)</td>
<td>Commercial</td>
<td>70663</td>
<td>59639</td>
</tr>
<tr>
<td>Boeing 747-400 Freighter (Body gear steering inoperative)</td>
<td>Commercial</td>
<td>70660</td>
<td>64440</td>
</tr>
<tr>
<td>Boeing 747-400 (Body gear steering inoperative)</td>
<td>Commercial</td>
<td>70660</td>
<td>64440</td>
</tr>
<tr>
<td>Boeing 747-8 Intercontinental (Body gear steering inoperative)</td>
<td>Commercial</td>
<td>74200</td>
<td>68400</td>
</tr>
<tr>
<td>Boeing 747-8 Intercontinental (Body gear steering inoperative)</td>
<td>Commercial</td>
<td>74200</td>
<td>68400</td>
</tr>
<tr>
<td>Boeing 747-8 Freighter (Body gear steering inoperative)</td>
<td>Commercial</td>
<td>76300</td>
<td>68400</td>
</tr>
<tr>
<td>Boeing 747-8 Freighter (Body gear steering inoperative)</td>
<td>Commercial</td>
<td>76300</td>
<td>68400</td>
</tr>
<tr>
<td>Boeing 757-200</td>
<td>Commercial</td>
<td>47320</td>
<td>38050</td>
</tr>
<tr>
<td>Boeing 757-300</td>
<td>Commercial</td>
<td>54430</td>
<td>38050</td>
</tr>
<tr>
<td>Boeing 767-200</td>
<td>Commercial</td>
<td>48511</td>
<td>47635</td>
</tr>
<tr>
<td>Aircraft</td>
<td>Type</td>
<td>Length (mm)</td>
<td>Wing span (mm)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Boeing 767-300</td>
<td>Commercial</td>
<td>54931</td>
<td>47635</td>
</tr>
<tr>
<td>Boeing 767-400</td>
<td>Commercial</td>
<td>62051</td>
<td>51990</td>
</tr>
<tr>
<td>Boeing 777-200</td>
<td>Commercial</td>
<td>63730</td>
<td>60929</td>
</tr>
<tr>
<td>Boeing 777-300</td>
<td>Commercial</td>
<td>73860</td>
<td>60929</td>
</tr>
<tr>
<td>Boeing 787-8 Dreamliner</td>
<td>Commercial</td>
<td>74200</td>
<td>60120</td>
</tr>
<tr>
<td>Bombardier BD-700 Global Express</td>
<td>Commercial</td>
<td>30302</td>
<td>28649</td>
</tr>
<tr>
<td>Canadair Challenger CL600</td>
<td>Commercial</td>
<td>26770</td>
<td>21210</td>
</tr>
<tr>
<td>Canadair RJ-100</td>
<td>Commercial</td>
<td>26770</td>
<td>21210</td>
</tr>
<tr>
<td>Canadair RJ-200</td>
<td>Commercial</td>
<td>26770</td>
<td>21210</td>
</tr>
<tr>
<td>Canadair RJ-700</td>
<td>Commercial</td>
<td>32513</td>
<td>23240</td>
</tr>
<tr>
<td>Dehavilland Dash 8-100</td>
<td>Commercial</td>
<td>22300</td>
<td>25900</td>
</tr>
<tr>
<td>Dehavilland Dash 8-200</td>
<td>Commercial</td>
<td>22300</td>
<td>25900</td>
</tr>
<tr>
<td>Dehavilland Dash 8-300</td>
<td>Commercial</td>
<td>25700</td>
<td>27400</td>
</tr>
<tr>
<td>Dehavilland Dash 8-400</td>
<td>Commercial</td>
<td>32840</td>
<td>28420</td>
</tr>
<tr>
<td>Dornier 228-201</td>
<td>Commercial</td>
<td>16560</td>
<td>16972</td>
</tr>
<tr>
<td>Dornier 228-212</td>
<td>Commercial</td>
<td>16560</td>
<td>16972</td>
</tr>
<tr>
<td>Dornier 328</td>
<td>Commercial</td>
<td>21220</td>
<td>20981</td>
</tr>
<tr>
<td>Embraer EMB-120</td>
<td>Commercial</td>
<td>20000</td>
<td>19789</td>
</tr>
<tr>
<td>Embraer ERJ-135</td>
<td>Commercial</td>
<td>26304</td>
<td>20042</td>
</tr>
<tr>
<td>Embraer ERJ-140</td>
<td>Commercial</td>
<td>28424</td>
<td>20042</td>
</tr>
<tr>
<td>Embraer ERJ-145</td>
<td>Commercial</td>
<td>29844</td>
<td>20042</td>
</tr>
<tr>
<td>Embraer ERJ-170</td>
<td>Commercial</td>
<td>29900</td>
<td>26002</td>
</tr>
<tr>
<td>Embrer ERJ-175</td>
<td>Commercial</td>
<td>31680</td>
<td>26002</td>
</tr>
<tr>
<td>Embraer ERJ-190</td>
<td>Commercial</td>
<td>36240</td>
<td>28722</td>
</tr>
<tr>
<td>Embrer ERJ-195</td>
<td>Commercial</td>
<td>38670</td>
<td>28722</td>
</tr>
<tr>
<td>Fairchild Metro 23</td>
<td>Commercial</td>
<td>18091</td>
<td>17375</td>
</tr>
<tr>
<td>Fairchild Metro 3</td>
<td>Commercial</td>
<td>18091</td>
<td>17375</td>
</tr>
<tr>
<td>Falcon 100</td>
<td>Commercial</td>
<td>13877</td>
<td>13072</td>
</tr>
<tr>
<td>Falcon 900</td>
<td>Commercial</td>
<td>20210</td>
<td>19330</td>
</tr>
<tr>
<td>Lockheed C-130H</td>
<td>Commercial</td>
<td>29790</td>
<td>40379</td>
</tr>
<tr>
<td>Lockheed C-130H-30</td>
<td>Commercial</td>
<td>34370</td>
<td>40410</td>
</tr>
<tr>
<td>Lockheed L1010 Tristar 1</td>
<td>Commercial</td>
<td>54150</td>
<td>47346</td>
</tr>
<tr>
<td>Lockheed L1010 Tristar 100</td>
<td>Commercial</td>
<td>54150</td>
<td>47346</td>
</tr>
<tr>
<td>Lockheed L1010 Tristar 200</td>
<td>Commercial</td>
<td>54150</td>
<td>47346</td>
</tr>
<tr>
<td>McDonnell Douglas DC8-61</td>
<td>Commercial</td>
<td>57100</td>
<td>42505</td>
</tr>
<tr>
<td>McDonnell Douglas DC8-63</td>
<td>Commercial</td>
<td>57100</td>
<td>42505</td>
</tr>
<tr>
<td>McDonnell Douglas DC8-71</td>
<td>Commercial</td>
<td>57100</td>
<td>42505</td>
</tr>
<tr>
<td>McDonnell Douglas DC8-73</td>
<td>Commercial</td>
<td>57100</td>
<td>42505</td>
</tr>
<tr>
<td>McDonnell Douglas DC9-15</td>
<td>Commercial</td>
<td>31797</td>
<td>27300</td>
</tr>
<tr>
<td>McDonnell Douglas DC9-41</td>
<td>Commercial</td>
<td>38281</td>
<td>28440</td>
</tr>
<tr>
<td>McDonnell Douglas DC9-51</td>
<td>Commercial</td>
<td>40675</td>
<td>28500</td>
</tr>
<tr>
<td>McDonnell Douglas DC10-10</td>
<td>Commercial</td>
<td>55500</td>
<td>47300</td>
</tr>
<tr>
<td>McDonnell Douglas DC10-30</td>
<td>Commercial</td>
<td>55500</td>
<td>50400</td>
</tr>
<tr>
<td>McDonnell Douglas DC10-40</td>
<td>Commercial</td>
<td>55500</td>
<td>50400</td>
</tr>
<tr>
<td>McDonnell Douglas MD11</td>
<td>Commercial</td>
<td>61370</td>
<td>51770</td>
</tr>
<tr>
<td>McDonnell Douglas MD81</td>
<td>Commercial</td>
<td>45061</td>
<td>32870</td>
</tr>
<tr>
<td>McDonnell Douglas MD82</td>
<td>Commercial</td>
<td>45061</td>
<td>32870</td>
</tr>
<tr>
<td>McDonnell Douglas MD83</td>
<td>Commercial</td>
<td>45061</td>
<td>32870</td>
</tr>
<tr>
<td>McDonnell Douglas MD87</td>
<td>Commercial</td>
<td>39747</td>
<td>32870</td>
</tr>
<tr>
<td>McDonnell Douglas MD88</td>
<td>Commercial</td>
<td>45061</td>
<td>32870</td>
</tr>
<tr>
<td>Aircraft Library: Turning circles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The turning capability of many aircraft is expressed as a nosewheel turning angle. This value includes the effect of slippage (if available) which results in a smaller effective turning angle. If the slip angle is not specified then the maximum nosewheel angle is quoted.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft Library: Pilot location</th>
</tr>
</thead>
<tbody>
<tr>
<td>We have been unable to obtain reliable data for the pilot offset for a few aircraft. In these cases a default location is calculated by AutoTrack. We recommend that, if the pilot location is important to your analysis, the default values should be replaced with explicit dimensions.</td>
</tr>
</tbody>
</table>
The vehicles listed below are typical of those found within airport environments. Many of these vehicles are oversize since they do not operate on public highways.

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte T135 electric tug & 3 baggage trailers</td>
<td>Support>Baggage</td>
<td>15335</td>
<td>1760</td>
</tr>
<tr>
<td>Contrac Cobus 2400</td>
<td>Support>Buses</td>
<td>8300</td>
<td>2400</td>
</tr>
<tr>
<td>Contrac Cobus 2700-S</td>
<td>Support>Buses</td>
<td>12000</td>
<td>2718</td>
</tr>
<tr>
<td>Contrac Cobus 2700</td>
<td>Support>Buses</td>
<td>13780</td>
<td>2718</td>
</tr>
<tr>
<td>Contrac Cobus 3000</td>
<td>Support>Buses</td>
<td>13780</td>
<td>3000</td>
</tr>
<tr>
<td>Crew coach (22 person)</td>
<td>Support>Buses</td>
<td>7620</td>
<td>2910</td>
</tr>
<tr>
<td>DAF Optare EXCEL L1150</td>
<td>Support>Buses</td>
<td>11553</td>
<td>2490</td>
</tr>
<tr>
<td>Neoplan Apron Bus Model 9022</td>
<td>Support>Buses</td>
<td>12920</td>
<td>3160</td>
</tr>
<tr>
<td>Neoplan Metroliner AN340/3 (40')</td>
<td>Support>Buses</td>
<td>12192</td>
<td>2591</td>
</tr>
<tr>
<td>Neoplan Metroliner AN340/3 (45')</td>
<td>Support>Buses</td>
<td>13716</td>
<td>2591</td>
</tr>
<tr>
<td>Neoplan Transliner AN435</td>
<td>Support>Buses</td>
<td>10668</td>
<td>2438</td>
</tr>
<tr>
<td>Neoplan Transliner AN435LF</td>
<td>Support>Buses</td>
<td>10668</td>
<td>2591</td>
</tr>
<tr>
<td>Neoplan Transliner AN440</td>
<td>Support>Buses</td>
<td>12192</td>
<td>2591</td>
</tr>
<tr>
<td>Neoplan Transliner AN440LF</td>
<td>Support>Buses</td>
<td>12192</td>
<td>2591</td>
</tr>
<tr>
<td>Neoplan Transliner AN440TLF</td>
<td>Support>Buses</td>
<td>12192</td>
<td>2591</td>
</tr>
<tr>
<td>Neoplan Transliner AN445TLF</td>
<td>Support>Buses</td>
<td>13716</td>
<td>2591</td>
</tr>
<tr>
<td>Oshkosh TI-1500 Aircraft Rescue & Firefighting Vehicle</td>
<td>Support>Fire</td>
<td>9525</td>
<td>2921</td>
</tr>
<tr>
<td>Oshkosh TI-3000 Aircraft Rescue & Firefighting Vehicle</td>
<td>Support>Fire</td>
<td>11074</td>
<td>2921</td>
</tr>
<tr>
<td>Oshkosh TI-4500 Aircraft Rescue & Firefighting Vehicle</td>
<td>Support>Fire</td>
<td>13462</td>
<td>2921</td>
</tr>
<tr>
<td>Rampmaster 10,000 LowPro Tanker</td>
<td>Support>Fuel</td>
<td>13106</td>
<td>3352</td>
</tr>
<tr>
<td>Rampmaster 10,000 WD Standard</td>
<td>Support>Fuel</td>
<td>13306</td>
<td>2743</td>
</tr>
<tr>
<td>Rampmaster 11,500 WD Standard</td>
<td>Support>Fuel</td>
<td>15145</td>
<td>3048</td>
</tr>
<tr>
<td>Rampmaster 15,000 WD Standard</td>
<td>Support>Fuel</td>
<td>15145</td>
<td>3048</td>
</tr>
<tr>
<td>Rampmaster 17,500 WD Standard</td>
<td>Support>Fuel</td>
<td>16408</td>
<td>3048</td>
</tr>
<tr>
<td>Rampmaster 3,000 Standard</td>
<td>Support>Fuel</td>
<td>7845</td>
<td>2565</td>
</tr>
<tr>
<td>Rampmaster 5,000 Standard</td>
<td>Support>Fuel</td>
<td>10096</td>
<td>2565</td>
</tr>
<tr>
<td>Rampmaster 7,000 RJ Standard</td>
<td>Support>Fuel</td>
<td>11627</td>
<td>2591</td>
</tr>
<tr>
<td>Rampmaster 7,000 WD Standard</td>
<td>Support>Fuel</td>
<td>12014</td>
<td>2743</td>
</tr>
<tr>
<td>Douglas Kalmar Tugmaster TBL-280</td>
<td>Support>Tugs</td>
<td>8090</td>
<td>3400</td>
</tr>
<tr>
<td>Douglas Kalmar Tugmaster TBL-400</td>
<td>Support>Tugs</td>
<td>8955</td>
<td>6034</td>
</tr>
<tr>
<td>Douglas Tugmaster DC12-44</td>
<td>Support>Tugs</td>
<td>9100</td>
<td>3050</td>
</tr>
<tr>
<td>GHH Fahrzeuge Aircraft Mover AM110</td>
<td>Support>Tugs</td>
<td>6610</td>
<td>2900</td>
</tr>
<tr>
<td>GHH Fahrzeuge Aircraft Mover AM210 (Wide)</td>
<td>Support>Tugs</td>
<td>8030</td>
<td>3790</td>
</tr>
<tr>
<td>GHH-Fahrzeuge Aircraft Mover AM350</td>
<td>Support>Tugs</td>
<td>8770</td>
<td>4100</td>
</tr>
<tr>
<td>GHH-Fahrzeuge Aircraft Mover AM500</td>
<td>Support>Tugs</td>
<td>9100</td>
<td>4200</td>
</tr>
<tr>
<td>Lektro AP8600</td>
<td>Support>Tugs</td>
<td>3523</td>
<td>1029</td>
</tr>
<tr>
<td>Lektro AP8600EZ</td>
<td>Support>Tugs</td>
<td>3523</td>
<td>1029</td>
</tr>
<tr>
<td>Lektro AP8700B</td>
<td>Support>Tugs</td>
<td>3924</td>
<td>1420</td>
</tr>
<tr>
<td>Lektro AP8750B</td>
<td>Support>Tugs</td>
<td>3924</td>
<td>1420</td>
</tr>
<tr>
<td>Lektro AP8750B-AL</td>
<td>Support>Tugs</td>
<td>3924</td>
<td>1420</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Lektro AP8800SDA</td>
<td>Support>Tugs</td>
<td>5198</td>
<td>2030</td>
</tr>
<tr>
<td>Lektro AP8850SDA</td>
<td>Support>Tugs</td>
<td>5198</td>
<td>2030</td>
</tr>
<tr>
<td>Lektro AP8900SD</td>
<td>Support>Tugs</td>
<td>5947</td>
<td>2440</td>
</tr>
<tr>
<td>Lektro AP8950SD</td>
<td>Support>Tugs</td>
<td>5947</td>
<td>2440</td>
</tr>
</tbody>
</table>
Tram Library (TRM_xxx.ATL)

This library contains examples of various types of tram in use around the world. We have refrained from supplying an exhaustive database of trams since they tend not to be supplied “off the shelf” but rather designed specifically for a network. You may find it easier when creating new trams to select a similar existing tram and edit it.

Most of the data has been obtained from manufacturers but we recommend that you double check critical dimensions.

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam (2001)</td>
<td>Tram</td>
<td>29200</td>
<td>2400</td>
</tr>
<tr>
<td>Amsterdam 3 car tram</td>
<td>Tram</td>
<td>25630</td>
<td>2350</td>
</tr>
<tr>
<td>Augsburg</td>
<td>Tram</td>
<td>27060</td>
<td>2650</td>
</tr>
<tr>
<td>Augsburg (1997)</td>
<td>Tram</td>
<td>42860</td>
<td>2300</td>
</tr>
<tr>
<td>Basel (1999)</td>
<td>Tram</td>
<td>42860</td>
<td>2300</td>
</tr>
<tr>
<td>Bocham</td>
<td>Tram</td>
<td>29858</td>
<td>2300</td>
</tr>
<tr>
<td>Bordeaux 5 car tram</td>
<td>Tram</td>
<td>32780</td>
<td>2400</td>
</tr>
<tr>
<td>Bordeaux 7 car tram</td>
<td>Tram</td>
<td>43925</td>
<td>2400</td>
</tr>
<tr>
<td>Breda 2 car tram</td>
<td>Tram</td>
<td>16000</td>
<td>2500</td>
</tr>
<tr>
<td>Breda 3 car tram</td>
<td>Tram</td>
<td>22000</td>
<td>2500</td>
</tr>
<tr>
<td>Breda 4 car tram</td>
<td>Tram</td>
<td>28000</td>
<td>2500</td>
</tr>
<tr>
<td>Brussels</td>
<td>Tram</td>
<td>22800</td>
<td>2300</td>
</tr>
<tr>
<td>Budapest</td>
<td>Tram</td>
<td>27000</td>
<td>2400</td>
</tr>
<tr>
<td>Citadis 300 3 car full low floor tram</td>
<td>Tram</td>
<td>22779</td>
<td>2400</td>
</tr>
<tr>
<td>Citadis 300 3 car partial low floor tram</td>
<td>Tram</td>
<td>29825</td>
<td>2400</td>
</tr>
<tr>
<td>Citadis 300 5 car full low floor tram</td>
<td>Tram</td>
<td>35518</td>
<td>2400</td>
</tr>
<tr>
<td>Citadis 300 5 car full low floor tram</td>
<td>Tram</td>
<td>40968</td>
<td>2400</td>
</tr>
<tr>
<td>Citadis 300 7 car full low floor tram</td>
<td>Tram</td>
<td>48257</td>
<td>2400</td>
</tr>
<tr>
<td>Cobra 2 car tram</td>
<td>Tram</td>
<td>17050</td>
<td>2400</td>
</tr>
<tr>
<td>Cobra 3 car tram</td>
<td>Tram</td>
<td>24450</td>
<td>2400</td>
</tr>
<tr>
<td>Cobra 4 car tram</td>
<td>Tram</td>
<td>37250</td>
<td>2400</td>
</tr>
<tr>
<td>Cologne</td>
<td>Tram</td>
<td>28400</td>
<td>2650</td>
</tr>
<tr>
<td>Croydon Tramlink</td>
<td>Tram</td>
<td>30100</td>
<td>2650</td>
</tr>
<tr>
<td>Duewag low-floor diesel powered LRV</td>
<td>Tram</td>
<td>24800</td>
<td>2970</td>
</tr>
<tr>
<td>Dusseldorf 5 car tram (2000)</td>
<td>Tram</td>
<td>29690</td>
<td>2400</td>
</tr>
<tr>
<td>Dusseldorf 7 car tram (2000)</td>
<td>Tram</td>
<td>39980</td>
<td>2400</td>
</tr>
<tr>
<td>Erfurt 3 car tram (1999)</td>
<td>Tram</td>
<td>20040</td>
<td>2300</td>
</tr>
<tr>
<td>Erfurt 5 car tram (1999)</td>
<td>Tram</td>
<td>31480</td>
<td>2300</td>
</tr>
<tr>
<td>Frankfurt Duewag Type R</td>
<td>Tram</td>
<td>27600</td>
<td>2350</td>
</tr>
<tr>
<td>Frankfurt Siemens Type U4</td>
<td>Tram</td>
<td>24490</td>
<td>2650</td>
</tr>
<tr>
<td>Freiburg 5 car tram</td>
<td>Tram</td>
<td>30520</td>
<td>2300</td>
</tr>
<tr>
<td>Freiburg 7 car tram</td>
<td>Tram</td>
<td>41960</td>
<td>2300</td>
</tr>
<tr>
<td>Grenoble</td>
<td>Tram</td>
<td>29400</td>
<td>2300</td>
</tr>
<tr>
<td>Hiroshima (1998)</td>
<td>Tram</td>
<td>30520</td>
<td>2450</td>
</tr>
<tr>
<td>Houston S70</td>
<td>Tram</td>
<td>29087</td>
<td>2650</td>
</tr>
<tr>
<td>Karlsruhe</td>
<td>Tram</td>
<td>28820</td>
<td>2650</td>
</tr>
<tr>
<td>Kassel *</td>
<td>Tram</td>
<td>28830</td>
<td>2300</td>
</tr>
<tr>
<td>Lyons</td>
<td>Tram</td>
<td>33216</td>
<td>2400</td>
</tr>
<tr>
<td>Magdeburg</td>
<td>Tram</td>
<td>30000</td>
<td>2300</td>
</tr>
<tr>
<td>Manchester Metrolink</td>
<td>Tram</td>
<td>29001</td>
<td>2570</td>
</tr>
<tr>
<td>Melbourne</td>
<td>Tram</td>
<td>22693</td>
<td>2650</td>
</tr>
<tr>
<td>Vehicle</td>
<td>Type</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Melbourne 3 car tram (2002)</td>
<td>Tram</td>
<td>20040</td>
<td>2650</td>
</tr>
<tr>
<td>Melbourne 5 car tram (2002)</td>
<td>Tram</td>
<td>29850</td>
<td>2650</td>
</tr>
<tr>
<td>Montpellier</td>
<td>Tram</td>
<td>29826</td>
<td>2650</td>
</tr>
<tr>
<td>Nordhausen (1999)</td>
<td>Tram</td>
<td>20040</td>
<td>2300</td>
</tr>
<tr>
<td>Orleans</td>
<td>Tram</td>
<td>29866</td>
<td>2320</td>
</tr>
<tr>
<td>Potsdam (1996)</td>
<td>Tram</td>
<td>30520</td>
<td>2450</td>
</tr>
<tr>
<td>San Diego 3 car tram</td>
<td>Tram</td>
<td>27317</td>
<td>2650</td>
</tr>
<tr>
<td>Schindler/SIG-Cobra</td>
<td>Tram</td>
<td>24900</td>
<td>2300</td>
</tr>
<tr>
<td>Sheffield Supertram</td>
<td>Tram</td>
<td>34750</td>
<td>2650</td>
</tr>
<tr>
<td>Strasbourg Eurotram</td>
<td>Tram</td>
<td>33100</td>
<td>2440</td>
</tr>
<tr>
<td>Sydney Variotram</td>
<td>Tram</td>
<td>32080</td>
<td>2400</td>
</tr>
<tr>
<td>Turin</td>
<td>Tram</td>
<td>22200</td>
<td>2300</td>
</tr>
<tr>
<td>Valencia</td>
<td>Tram</td>
<td>23780</td>
<td>2400</td>
</tr>
<tr>
<td>Valenciennes</td>
<td>Tram</td>
<td>29474</td>
<td>2400</td>
</tr>
<tr>
<td>Vienna</td>
<td>Tram</td>
<td>30200</td>
<td>2650</td>
</tr>
</tbody>
</table>

* Asymmetrical tram body
Glossary of Terms

Active Hitch
A type of rear axle consisting of a drawbar with the bar facing rearwards linked to the front axle or articulation point (hence ‘active’).

Actual Wheelbase
The distance between the innermost axles on a tractor, or the distance from kingpin or drawbar pivot point to the innermost rear axle on a drawbar or semi-trailer.

AutoDrive
A means of driving the vehicle in which the path from a given position is calculated automatically as you move a target point (the cursor).

Authorisation code
A code needed to update the hardware lock to run each new version. May also be needed when you purchase extra features.

Axle Spacing
The distance between adjacent axles in a multi-axle group at the front or rear of a component.

Baseline
The baseline is the line that passes along the back of a row of parking bays.

Bay markings
The bay markings include the painted lines, symbols and hatching used to delineate the preferred position of the car.

Bay style
Each different composition of markings, safety zones, symbols and parking accessories is call a bay style.

Bay symbol
Bay symbols are the graphics painted within the bay and used to indicate, for example, bay usage.
Bend island
Bend islands are placed where a row of parking bays changes direction.

Castor Steering
Wheels that are part of a fixed axle group but that are free to rotate. Sometimes referred to as self-steered wheels.

Cats Whiskers
See Predictive Turning.

Cut-in Point
The point at which the spine of the element is tangential to the arc that it transcribes.

Cut-in Radius
The radius of the arc traversed by the Cut-in Point.

Dongle
Slang name for a Hardware Lock.

Drag Lines
Lines drawn from the grips used to extend the path to the front most and rearmost grips on the vehicle. These lines vary in length according to the vehicle size and can be switched off.

Drawbar
A rigid towing bar attached rigidly to an axle. The bar and axle turn as one unit.

Drawbar Articulation Angle
The angle subtended at the axle pivot of a drawbar by the drawbar and associated trailer spine.

Drawbar Length
The length of a drawbar is measured from the centre of turning of the relevant axle group to the physical end of the drawbar. The coupling at the remote end must be defined separately in AutoTrack.

End island
End islands are non-parking areas placed at the ends of rows of parking bays.
DXF File
DXF stands for Drawing Exchange Format, a text file format used to transfer data between dissimilar CAD systems. Supported by many CAD systems.

Dynamic Edit
See Dynamic Editing.

Dynamic Editing
Editing a path by dragging the grips at target points (and / or intermediate points) to new locations. The path updates automatically when the grip is dropped.

Effective Fixed Axle
The effective fixed axle is the single axle that would have the same effect on the vehicle swept path as the fixed axle group. It is the centroid of the group after the effects of retracted and self-steered axles are taken into account.

Effective Front Axle Offset
The offset of the effective front axle from the reference datum. Positive if the effective axle position is behind the reference datum.

Effective Front Track Width
The distance between outer faces of the front wheels to be used in path calculations.

Effective Rear Axle Offset
The offset of the effective rear axle from the reference datum. Positive if the effective axle position is behind the reference datum.

Effective Rear Track Width
The distance between outer faces of the rear wheels to be used in path calculations.

Effective Steered Axle
The effective steered axle offset is the single axle that would have the same effect on the vehicle swept path as a given steered axle group. It is the outermost axle of the steered axle group, i.e. the furthest forward on a front axle group and the furthest back on a rear axle group.

Effective Wheelbase
The distance between the Effective Front and Rear Axles.
Envelope
A single line representing the maximum body or wheel movement. In the case of vehicle bodies it is the outer limit of movement of any point on any body. In the case of wheels it is the outer limit of travel of any wheel.

Exit Overturn
An exit overturn is when a vehicle continues past the point at which it would normally start the turn (i.e. delays the start of the turn) prior to turning back and exiting the turn. The lateral deviation from the normal path is the exit overturn distance.

Follow
A means of driving a vehicle in which you specify a required path as a polyline and let the vehicle attempt to follow it.

Grips
Small squares that appear when an object is selected. Grips can be selected and moved using the mouse.

Hairpin marking
A type of parking bay marking comprising twin sidelines connected at the entrance.

Hardware Lock
A hardware lock or dongle is a security device that must be plugged into the parallel port of your computer to allow AutoTrack 5 to run.

In bay numbering
In bay numbering is when bay numbers are placed within each marked parking bay.

Independent Bogies
Multiple linked bogies arranged along a unit each with their own turntable. Also known as Tandem Axles. See also Pendel Axles.

Intermediate Grips
Transient editing grips that are displayed along the path between Target Points to make path editing easier. An Intermediate Grip becomes a Target Point if it is selected.

Kerb-to-Kerb Turning Circle Radius
The radius of the smallest circle within which the vehicle’s wheels can turn. It is assumed that this occurs when full steering lock is applied.
Kerbside numbering
Kerbside numbering is when the bay numbers are placed adjacent to the bay.

Layer
A means of grouping objects together within an AutoCAD drawing. The properties of layers (e.g. visibility) may be controlled independently of the objects they include. See also Level, the equivalent in MicroStation.

Level
A means of grouping objects together within a MicroStation drawing. The properties of layers (e.g. visibility) may be controlled independently of the objects they include. See also Layer, the equivalent in AutoCAD.

Linkage Proportion
The linkage proportion is the proportion of the articulation or wheel angle at one end of a unit that is applied to the axle group at the other end. The proportion may be specified in terms of angles or tangents of angles. In arithmetic terms if the linkage is on an angular basis the linkage proportion would be:-
\[\text{LinkageProportion} = \frac{\text{LinkedAngle}}{\text{PrimaryAngle}} \]
If the linkage is on a tangential basis the linkage proportion would be:-
\[\text{LinkageProportion} = \frac{\tan(\text{LinkedAngle})}{\tan(\text{PrimaryAngle})} \]
We understand that the latter is the more common form of linkage and in this case the effective cut in point offset is fixed for all primary angles.

Loci
The plural of locus. See Locus.

Lock
Steering angle; thus, maximum left lock is the maximum steering possible when turning left and right lock is the maximum when turning right.

Lock to lock time
Lock-to-lock time is the time that it takes the driver of the vehicle to turn the steering from the maximum angle (full lock) in one direction to maximum angle (full lock) in the opposite direction in a single continuous movement.

Locus
The path of a moving point in space. In the context of AutoTrack the path of the wheel tracks or the body vertices. Referred to in AutoTrack in it’s plural form loci.
Manual Drive
A means of driving a vehicle that uses a control overlay displayed on screen. The vehicle moves forwards, reverse, left and right according to the position of the cursor on the control overlay.

Maximum Drawbar Articulation Angle
The largest Drawbar Articulation Angle permitted.

Maximum Wheel Angle
The maximum angle of any wheel in a group, i.e. at the front or at the rear. This is normally the inside wheel on the innermost axle but may be otherwise if the widths of the axles in the group vary.

Minimum Cut-in Radius
The radius of the arc traversed by the Cut-in Point when the vehicle is turning at the Maximum Steering Angle.

Model Settings
The criteria that control the how a specified vehicle should behave in a specific situation. For example, a lower limit might be placed on the allowable lock rate.

Object enabler
An AutoCAD add-on that allows third party entities, like AutoTrack path entities, to be regenerated but not edited.

Offset Envelope
The envelope of maximum body or wheel movement with a further margin added. This may represent a safety or clearance margin.

Overturn
A technique for reducing the vehicle cut-in on corners whereby the vehicle either turns temporarily in the opposite direction (side overturn) or delays the exit from the turn (exit overturn).

Overturn angle
When performing an overturn (side or exit) the overturn angle is the angular deviation of the wheels from the path the same vehicle would take if performing a non-overturn manoeuvre.

Parking meter
Parking meters take many forms but are generally placed adjacent to either the side or the end of the bay.
Pendel Axles
Multiple linked bogies arranged both across and along a unit that turn in much the same manner as Ackerman axles, i.e. those axles furthest away from the centre of turn follow the widest radius arc.

Predictive Turning
Predictive Turning is an AutoDrive feature that displays the limits of the vehicle path from the last position placed and the limits of body or wheel envelope from the ghosted unselected position. Also known as “Cat’s Whiskers”.

Primary Axle
The innermost axle of a group, i.e. the rearmost axle of a front axle group and the front most axle on a rear axle group.

Privacy post
Privacy posts are used to prevent use of parking bays by unauthorized personnel.

Rail wheels
Wheels designed to run on rails typically with an inner flange to prevent the wheel from derailing.

Retracted Axle
An axle that is present but not in contact with the road surface. Retracted axles are ignored when AutoTrack calculates the effective axle positions.

Safety post
Safety posts may be placed at the ends of parking bays to prevent vehicles from overshooting.

Safety zone
Safety zones are areas of extra space provided to meet special requirements and are measured from the centres of the bay side and entrance lines.

Script
A means of driving a vehicle by issuing commands such as; forwards 10 metres, turn left 30 degrees, continue for 5 metres.

Self-steering
Wheels that are part of a fixed axle group but that are free to rotate. Sometimes referred to as castors.
Service type
The different usages of parking areas are called service types.

Side Overturn
A side overturn is when a vehicle starts a turn with opposite lock for a short distance prior to making the turn. The lateral deviation from the normal path is the side overturn distance.

Steering Angle
The angle of an imaginary wheel at the centre of the controlling axle or coupling.

Stub axle
An axle carrying wheel(s) at only one end.

Stub axle length
The length of a stub axle is measured from the pivot point to the centre of the wheel group.

T-markings
A type of parking bay marking consisting of a T painted at the entrance between each adjacent parking bay. The leg of the T runs a short distance down the side of the bay and the cross runs part way along the entrance line.

Tandem Axles
See Independent Bogies.

Target Point
A point through which the vehicle must travel.

Tracking Point
The Tracking Point is the point on the vehicle that must pass through the specified Target Points. It is the point on the vehicle that you move and position when you use AutoDrive and also the point that follows the line in the Follow drive mode.

Tyred Wheels
Wheels with tyres fitted.

Vehicle class
Vehicles using parking areas are grouped into classes; vehicles with similar parking requirements.
Wall-to-Wall Turning Circle Radius
The radius of the smallest circle within which the vehicle's body can turn. It is assumed that this occurs when full steering lock is applied.

Wheel Diameter
The diameter of the outer face of the tyre.

Wheel stop
Wheels stops are placed at the ends of bays to prevent the vehicle from overshooting.

Wheel Track
The distance between the outer faces of the wheels on an axle.
Index

3
3D Animations (AutoCAD only) 220
3D body shapes for animation 271

A
A few do's and don'ts 54
Access to parking standards 281
Access to parking standards in the Pool 282
Access to vehicle libraries 223
Access to vehicles in the Pool 224
Accuracy 73
Adjusting dynamics settings (not Light Rail version) 206
Adjusting model settings (not Light Rail version) 204
Adjusting speed settings (not Light Rail version) 205
Adjusting the path alignment (Path toolbar) 179
Adjusting the path alignment using grip editing (not MicroStation version) 184
Adjusting the tracking point (not Light Rail version) 206
Adjusting the view (View toolbar) 177
Advanced options (Advanced Animation dialog) (8005) 213
AEC BS1192 Part 5 Layer/Level naming Convention 120
Aircraft library
 Pilot location 401
Aircraft Library
 List of Vehicles 397
 Turning circles 401
Aircraft Library (AIR_xxx.ATL) 398
Animation Commands dialog (8040) 217
Animations dialog (8010) 219
Assumptions 65
Attributes dialog 311
Attributes dialog (3830) 94
Australian Design Vehicle Library
 Axle layouts & wheel sizes 364
 Kingpin offsets 365
 List of Vehicles 362
 Lock to lock time 364
 Maximum Articulation Angles 364
 Minimum Turning Circle Radii 363
 Vertical Clearance 365
Australian Design Vehicle Library (AU_xxx.ATL) 362
Australian Vehicle Library
 References 365
Austrian Design Vehicle Library
 Axle layouts & wheel sizes 366
 Kingpin offsets 367
 List of Vehicles 366
 Lock to lock time 366
 Maximum Articulation Angles 366
 References 367
 Turning circles 366
Austrian Design Vehicle Library (AT_xxx.ATL) 366
Authorisation code 2
AutoCAD object enabler 31
AutoDrive (not Lite or Light Rail versions) 148
AutoDrive options (5110) 151
AutoTrack hardware lock 1
AutoTrack Parking standards 281
AutoTrack script commands 161
AutoTrack Updates dialog (1970) 103
AutoTrack vehicle libraries 223

B
Base layer or level name (Base Layer/Level Name dialog) (5120) 120
British Design Vehicle Library
 Axle layouts & wheel sizes 369
 Kingpin offsets 369
 Lock to lock time 368
 Maximum Articulation Angles 368
 References 369
 Turning circles 368
British Design Vehicle Library (GB_xxx.ATL) 368
Building vehicles using drag and drop 235

C
Canadian Design Vehicle Library
 Axle layouts & wheel sizes 371
 Kingpin offsets 371
 List of Vehicles 370
 Lock to lock time 370
 Maximum Articulation Angles 371
 References 371
 Turning circles 370
Canadian Design Vehicle Library (CA_xxx.ATL) 370
Capabilities 55
Changing your vehicle 173
Checking vertical clearances 59
Compatibility with previous versions 224
Configuring AutoCAD manually 35
Configuring MicroStation manually 37
Context sensitive on-line help 63
Copying standards and units using drag and drop 286
Copying vehicles and units using drag and drop 235
Creating a new group 236, 287
Creating a new library (Library Details dialog) (3520) 231
Creating a new parking standard file (Parking Standard File dialog) 283
Creating a simple animation (Basic Animation dialog) (8000) 211
Creating the install script 32
Creating vehicles 238
Customising the Library Explorer view (Library Explorer Columns dialog) (3515) 228

D
Default Parking Standard dialog (4690) 288
Default values 63
Default Vehicle dialog (5100) 172
Demonstration copies 2
Demonstration Copy dialog (1800) 44
Design speed 69
Designing for minimum tyre wear 71
Development & planning scenarios 58
Drawing file size 329
Drawing Settings 113
Animations (not AutoCAD Lite) (2150) 144
Construction Lines
 Drag Lines 130
 Path 130
 Steering Pointer 130
Construction Lines (3160) 129
Dynamics (not Light Rail version) (2180) 126
Layers (AutoCAD only) (2060) 116
Levels (MicroStation pre-v8 only) (2065) 118
Levels (MicroStation v8 onwards) (2067) 117
Model (not Light Rail version) (2070) 122
Reports
 Discrete (3020) 131
 Envelope (3050) 137
 Graph (3070) 142
 Loci (3040) 135
 Offset Envelope 1 139
 Profile (3060) 140
 Spaced (3030) 133
Reports (3000) 128
Scale (2030) 115
Speed (not Light Rail version) (2080) 124
Tracking Point (not Light Rail version) (2170) 121
Units (2020) 114

E
Editing Aircraft bodies (Aircraft Body dialog) (4210) 275
Editing individual bays (Parking Bay Properties dialog) (4440) 321
Editing islands (Parking Island Properties dialog) (4460) 322
Editing Jet Blast contours (Jet Blast Contour dialog) (4230) 276
Editing parking row layout 324
Editing rows (Parking Properties dialog) (4450) 319
Editing Tractor bodies (Tractor body dialog) (4220) 273
Editing Tram bodies (Tram Body dialog) (4200) 274
Editing vertices (Vertices dialog) (4180) 272
Errors due to algorithm limitations 74
Errors in path of steered wheels due to varying conditions 73
Errors in path of trailing wheels due to varying conditions 74
European Vehicle Library
 Axle layouts & wheel sizes 396
 Kingpin offsets 396
 List of Vehicles 393
 Lock to lock time 396
 Maximum Articulation Angles 396
 Turning circles 395
European Vehicle Library (EUR_xxx.ATL) 393
Exporting AutoTrack data (Export AutoTrack Data dialog) (5090) 327
Extending or trimming a path 189
Extracting path data 209

F
Fastest line through roundabouts 59
Features 55
Fixed axles 72
Follow (not Light Rail version) 158

G
Generating turn templates 191
German Design Vehicle Library
 Axle layouts & wheel sizes 373
 Kingpin offsets 373
 List of Vehicles 372
 Lock to lock time 372
 Maximum Articulation Angles 372
 References 373
 Turning circles 372
German Design Vehicle Library (DE_xxx.ATL) 372
Getting help 63
Glossary of Terms 407
Guided Drive (only Light Rail version) 165

H
Hands-off 72
Height and ground clearance 270
Help tutor 64
How can I correct a vehicle that has over-articulated while travelling forwards 356
How can I remove a vehicle profile 359
How can I remove all AutoTrack data from my drawing 357
How can I stop AutoTrack automatically checking for updates 359
How can I stop my vehicle jack-knifing when reversing using AutoDrive 356
How can I stop the vehicle jack-knifing when reversing using Manual Drive 356
How the lock-to-lock rate is calculated 70
How to use AutoTrack 56

I
Identifying and resolving problems 40
Important (MicroStation users only) 331
Importing AutoCAD drawing files 278
Importing AutoTrack data (Import AutoTrack Data dialog) (5080) 328
Importing outlines (Import Outlines dialog) (not MicroStation version) 277
Inertia 71
Installing AutoTrack 14
Installing AutoTrack from the web 30
Installing the licence manager on a Novell Netware server 10
Installing the licence manager on a Windows NT/2000/XP server 5
Installing the licence monitor on a Windows NT/2000/xp client computer 11
Installing the NetHASP Licence Manager software (Network version only) 5
Installing the NetHASP Licence Monitor software (Network version only) 11
Installing the software 3
Introduction to theory 65

L
Layer / Level naming conventions 119
Library Details
 Library 231
 Users (3530) 231
Licences 2
Limitations 55
Loading AutoTrack 2.x vehicle libraries 224
Lock-to-lock distance 70
Lock-to-lock time 70

M
Manual Drive (not Light Rail version) 154
Manual layout 62
Migrating from WinTrack 56
Modelling Active Hitches 58
Modelling aircraft 58
Modelling articulated semi-trailer vehicles 57
Modelling combination steered vehicles 58
Modelling conveyor systems 59
Modelling drawbar and multi-trailer vehicles 57
Modelling rigid vehicles 57
Modelling the effects of super elevation and side friction 59
Modelling trams and light rail vehicles 59
Modelling vehicles with pushing tractors 58
Modelling vehicles with steerable couplings 58
Modifying, repairing or removing AutoTrack 27
Mouse conventions 63
Moving the NetHASP Licence Manager (Network version only) 10
Multiple axles 71

N
Netherlands Design Vehicle Library
 Axle layouts & wheel sizes 374
 Kingpin offsets 375
 List of Vehicles 374
 Lock to lock time 374
 Maximum Articulation Angles 374
 References 375
 Turning circles 374
 Netherlands Design Vehicle Library (NL_xxx.ATL) 374
 Network licences 2
 Network version 4
 New Zealand Design Vehicle Library
 Axle layouts & wheel sizes 378
 Kingpin offsets 378
 List of Vehicles 376
 Lock to lock time 377
 Maximum Articulation Angles 377
 Minimum Turning Circle Radii 376
 References 378
 Vertical Clearance 378
 New Zealand Design Vehicle Library (NZ_xxx.ATL) 376
 Norwegian Design Vehicle Library
 Axle layouts & wheel sizes 380
 Kingpin offsets 380
 List of Vehicles 380
 Lock to lock time 380
 Maximum Articulation Angles 380
 References 381
 Norwegian Design Vehicle Library (NO_xxx.ATL) 380
 Notation conventions 63

O
On-line assistance 63

P
Park a Vehicle 169
Parking Report (4410) 317
Parking Standard
 Bay Dimensions (4600) 298
Bay Markings (4580) 300
Bay Styles (4610) 306
Bay Symbols (4620) 302
Bend Islands (4470) 292
Construction Lines (4490) 310
End Islands (4480) 291
General (4500) 290
In Bay Numbering (4510) 293
Kerbside Bay Numbering (4520) 294
Parking Meters (4530) 299
Privacy Posts (4540) 308
Safety Posts (4550) 307
Safety Zones (4560) 304
Service Types (4570) 296
Valid Bay Angles (4620) 297
Vehicle Classes (4640) 295
Wheel Stops (4650) 309

Parking Standard File
Parking Standard File 283
Users 284
Parking Standard Group dialog (4670) 287
Path Animation dialog (8020) 215
Path Properties
Manoeuvres
 Dynamics 200
 General (5040) 200
 Model 200
 Speed 200
 Tracking Point 200
Manoeuvres (5020) 199
Path Notes (5010) 198
Reports 201
Vehicle 198

Paths of towed elements 68
Placing access roads (4430) 315
Placing discrete body outlines (5140) 209
Placing rows of bays 312
Positioning a vehicle (Position Vehicle dialog) (6000) 175
Positioning a vehicle interactively 174
Prediction algorithm 68
Printing library or vehicle details (Print dialog) (5070) 234
Purging AutoTrack data (PurgeAutoTrack dialog) (5060) 207

S
Saving a library 233
Saving a parking standard file 285
Savoy Basic Layer/Level naming convention 119
Savoy Complex Layer/Level naming convention 119
Savoy Standard Layer/Level naming convention 119
Scale dialog (5130) 172
Script (not Light Rail version) 160
Script Commands
 Drive 163
 General 161
 New Path 161
 Positional 162
 Stop Conditions [S] 163
 Turn Conditions [T] 164
Scripted ‘silent’ installations 32
Selecting a Parking Standard 288
Selecting a vehicle to drive 170
Settings 57
Settings Wizard 77
 Articulation Limits (2455) 84
 Design Speed (2430) 82
 Dynamics (2460) 85
 Finish (2480) 87
 Layers (2420) 80
 Scale (2400) 78
 Steering Limits (2450) 83
 Turn Transitions (2440) 81
 Updates (2470) 86
 Vehicle Editing Units (2410) 79
Single user licences 2
Single user version 3
Some final points to note 25
Some tips for defining trams (Light Rail version only) 239
South African Design Vehicle Library
 Axle layouts & wheel sizes 382
 Kingpin offsets 383
 List of Vehicles 382
 Lock to lock time 382
 Maximum Articulation Angles 382
References 383
South African Design Vehicle Library
 (ZA_xxx.ATL) 382
Specialised Vehicles Library (SPC_xxx.ATL) 397
Steered axles 71
Step 1
 Running AutoTrack and changing some
 commonly used settings 332
Step 2
 Selecting a vehicle and using Manual Drive
 (not Lite) 334
Step 3
 Selecting a vehicle and using AutoDrive (not
 Lite version) 336
Step 4
 Selecting a vehicle and using Follow 338
Step 5
 Selecting a vehicle and using Script (not Lite
 version) 340
Step 6
 Changing the appearance of your path 343
Step 7
 Creating a new vehicle using the wizard 345
Step 8
 Editing a vehicle using the advanced editor
 352
Swedish Design Vehicle Library
 Axle layouts & wheel sizes 385
 Kingpin offsets 385
 List of Vehicles 384
 Lock to lock time 384
 Maximum Articulation Angles 384
 References 385
 Turning circles 384, 386
Swedish Design Vehicle Library (SE_xxx.ATL) 384
Swiss Design Vehicle Library
 Axle layouts & wheel sizes 387
 Kingpin offsets 387
 List of Vehicles 386
 Lock to lock time 386
 Maximum Articulation Angles 386
 References 387
Swiss Design Vehicle Library (CH_xxx.ATL) 386
System Settings 96
 AutoDrive (not Lite or Light Rail versions)
 (2100) 106
 Follow Drive (not Light Rail version) (2120) 110
 Guided Drive (only Light Rail version) (2130)
 112
 Language (2010) 99
 Manual Drive (not Light Rail version) (2110)
 108
 Network (2015) 100
 Skill Level (2050) 105
 Start Up (2000) 97
 Updates (2190) 102
 View (2040) 104

T
 Technical Support 41
 Template Wizard
 Format (6530) 196
 Model Settings (6515) 194
 Turn Angles (6520) 195
 Type (6500) 192
 Vehicle (6510) 193
 The Advanced Editor 255
 The Introduction screen (not AutoTrack
 Templates) (1900) 53
 The New Features dialog (1975) 52
 The Template Wizard 191
 The Vehicle Wizard 239
 Theoretical path of a single front steered
 element 66
 Theoretical path of an element with front and
 rear steering 67
 Time related aspects 69
 To add a new user 232, 284
 To add a vertex to a row of parking bays 325
 To add or remove intermediate grips (not Light
 Rail version) 187
 To add the 39
 To adjust a bearing turn (not Light Rail version)
 186
 To adjust a parking row 325
 To adjust the articulation 174
 To adjust the vehicle start heading (not Light
 Rail version) 180, 185
 To adjust the vehicle start position (not Light Rail
 version) 180
 To adjust the vehicle start spine angles (not
 Light Rail version) 180, 185
 To adjust the vehicle start steering angle (not
 Light Rail version) 180, 185
 To adjust the view 156, 176
 To change dynamics settings 206
 To change the absolute articulation limits 204
 To change the absolute steering limits 204
 To change the design speed 205
 To change the heading of the vehicle 174
 To change the position of the vehicle 174
 To change the selected vehicle 173
 To change the steering rate limits 205
 To change the tracking point 206
 To close a vehicle library 171
 To copy a row of bays 324
 To copy the path 181
 To create a new vehicle 238
 To create or edit an AutoTrack script (6050) 160
 To customise the parking report 317
 To delete a path 181
 To delete a row of bays 324
 To delete the last target point (not Light Rail
 version) 183
 To display the parking report 317
 To drive backwards on an arc 149
 To drive forwards on an arc 149
 To edit a parking bay 321
To edit a parking island 322
To edit a parking row 319
To edit a parking standard 289
To edit an existing user (Maintain User dialog) 285
To edit an existing user (Maintain Users dialog) (3560) 233
To edit the path properties 157
To edit the path reports 157
To explode a row of bays 324
To explode the path entity (or cell) 181
To export a parking report 318
To extend a path 189
To extend a row of parking bays 325
To extract path data 209
To extract the software 30
To generate a turn template 191
To insert a new target point (not Light Rail version) 182, 186
To insert a vehicle details report 208
To install the object enabler version from CD 31
To install the software 30
To install the software from the web 31
To join two rows of parking bays 325
To load an AutoTrack 2.x library 224
To load an AutoTrack 2.x vehicle 225
To load an AutoTrack script 161
To load and run AutoTrack for AutoCAD manually 46
To load and run AutoTrack for MicroStation manually... 51
To move a path 185
To move a row of bays 324
To move a target point (not Light Rail version) 185
To move a vehicle details report 208
To move target points (not Light Rail version) 182
To move the path 180
To open a vehicle library 171
To pan the image (e.g. if the vehicle is close to the edge of the window) 177
To pause driving 156
To place a parallel row of bays 313
To place a row of bays freehand 312
To place an access road freehand 315
To place an access road on a line 316
To place discrete outlines 209
To position the vehicle at a point on an existing path 176
To position the vehicle at the end of an existing path 176
To position the vehicle at the start of an existing path 176
To record an animation 221
To redraw the path and update the reports 157
To remove a target point (not Light Rail version) 186
To remove a vehicle details report 208
To remove intermediate target points (not Light Rail version) 183
To reset any drawing rotation 177
To rotate a row of bays 324
To rotate the drawing automatically 177
To rotate the drawing to the left 177
To rotate the drawing to the right 177
To rotate the path 181
To run an AutoTrack script 161
To run AutoTrack from the Taskbar Start Programs Menu 45
To run AutoTrack from the Taskbar Start Programs menu... 49
To run AutoTrack from within AutoCAD 46
To run AutoTrack from within MicroStation... 50
To save an AutoTrack script 161
To see the steering pointer 179, 184
To see the target points on a path 184
To see the target points on the path 179
To select a vehicle from a loaded library 171
To set a default parking standard 288
To set a default vehicle 171
To set or change the heading of the entire vehicle 175
To set or change the position of the vehicle 175
To set or change the starting orientation of a selected spine 175
To set or change the starting steering angle 175
To show both the vehicle body and chassis 178
To show only the vehicle body 178
To show only the vehicle chassis 178
To show or hide the vehicle trail 157
To start driving 176
To start driving (Control Overlay) (6020) 155
To terminate the current path 157
To trim the end of the path 182, 189
To trim the start of the path 181, 189
To undo part of the path 157
To undo the last operation 176
To use AutoDrive in Arc mode 148
To use AutoDrive in Bearing mode 149
To use Follow 158
To use Guided Drive 165
To use Manual Drive 154
To use Park a Vehicle 169
To use Vertical Clearance 167
To view the model settings 176
To view the path properties 176
To zoom in 177
To zoom out 177
Tram Library (TRM_xxx.ATL) 404
Trial copies 2
Turning circle radius and steering angle 69

U

Undriveable Paths (5050) 188
Uninstalling AutoTrack 34
Unique parking standard names (Parking Standard Name dialog) 314
Unit Details
Axle Groups
 Linkage Details (4090) 264
Body / Outlines (4120) 268
Couplings (4140) 279
Front Axles / Rear Axles (4070) 260
Steering (4150) 266
Unit 258
Unit Details dialog (4060) 257
Unlocking a library (Unlock Library dialog)
(3550) 236
Unlocking a parking standard file (Unlock Parking Standard File dialog) (3555) 286
Updating AutoTrack 34
US Design Vehicle Library
 Axle layouts & wheel sizes 391
 Body dimensions 391
 Kingpin offsets 391
 List of Vehicles 388
 Lock to lock time 391
 Maximum Articulation Angles 391
 References 391
 Turning circles 391
US Design Vehicle Library (US_xxx.ATL) 388
Using Export / Import for personal settings 328
Using Follow to check fastest line 111

V

Varying track widths 72
Vehicle Details dialog (4050) 255
Vehicle details report 208
Vehicle Diagram dialog (3570) 229
Vehicle Group dialog (4040) 237
Vehicle wizard
 Aircraft Fuselage (aircraft only) (7110) 252
 Aircraft Tailplane (aircraft only) (7100) 251
 Aircraft wings (aircraft only) (7090) 250
 Axles (7010) 241
 Body (7070) 247
 Couplings (7060) 246
 Drawbar (7050) 243
 Finish (7130) 254
 Maneuuvrability (7040) 245
 Name (7000) 240
 Pantograph (trams only) (7120) 253
 Steering (not trams) (7030) 244
 Tractor body (7075) 248
 Tram body (trams only) (7080) 249
 Wheelbase (7020) 242
 Vertical clearance 167
 Video tutorial 64
 Viewing a standard in a parking standard file or the pool (Parking Standard Explorer dialog)
(4400) 282
 Viewing a vehicle in a library or the pool (Library Explorer dialog) (3510) 226
 Viewing a vehicle used on a particular path 237
 Viewing AutoTrack paths in AutoCAD if you don't have AutoTrack 48
 Viewing or editing an existing vehicle 237
 Viewing or editing parking standards 289
 Viewing the properties of a path (Path Properties dialog) 197
 Viewing the properties of all paths (Drawing Explorer) (3300) 202

W

What AutoTrack can and can't do 55
What's new in version 8? 60
Why are my report colour changes not visible 359
Why can I not see my AutoTrack paths when I load my drawing into another copy of AutoCAD (AutoCAD version only) 357
Why can I not see the AutoTrack menu or toolbar 355
Why do my layers not appear and disappear correctly (AutoCAD version only) 357
Why do my vehicle libraries take so long to load 358
Why does AutoTrack not autoload some of the Savoy vehicle libraries 358
Why does Follow not follow my line accurately 357
Why does my animation movie file not play on other computers 359
Why does my path disappear when I stop driving in AutoCAD 358
Why does my path disappear when I stop driving in MicroStation 358
Why does my vehicle not appear as it should 356
Why does my vehicle not turn when I am using AutoDrive 356
Why does my vehicle oscillate when I use Follow to follow a line 358
Why has my envelope gone berserk 357
Why is my vehicle not visible 355
Why is part of my manoeuvre just a line 355
Why is my vehicle not visible 355
Windows NT based systems (NT4, 2000, XP, 2003, Vista, etc.) 25